Title |
Optimal Control of Stochastic Systems with Completely Observable Random Coefficients |
Abstract |
The control of a linear system with random coefficients is discussed here. The cost function is of a quadratic form and the random coefficients are assumed to be completely observable by the controller. Stochastic Process involved in the problem by the controller. Stochastic Process involved in the problem formulation is presented to be the unique strong solution to the corresponding stochastic differential equations. Condition for the optimal control is represented through the existence of solution to a Cauchy problem for the given nonlinear partial differential equation. The optimal control is shown to be a linear function of the states and a nonlinear function of random parameters. |