Title |
Position Estimation of Free-Ranging AGV Systems Using the Extended Kalman Filter Technique |
Authors |
Lee, Sang-Ryong(Lee, Sang-Ryong) |
Abstract |
An integrating position estimation algorithm has been developed for the navigation system of a free-ranging AGV system. The navigation system focused in this research work consists of redundant wheel encoders for the relative position measurement and a vision sensor for the absolute position measurement. A maximum likelihood method and an extended Kalman filter are implemented for enhancing the performance of the position estimator. The maximum likelihood estimator processes noisy, redundant wheel encoder measurements and yields efficient estimates for the AGV motion between each sampling interval. The extended Kalman filter fuses inharmonious positional data from the deadreckoner and the vision sensor and computes the optimal position estimate. The simulation results show that the proposed position estimator solves a generalized estimation problem for locating the vehicle accurately in space. |