Title |
Decentralized Optimal Control of Distributed Parameter Systems |
Abstract |
This paper presents a new method for the optimal control of the distributed parameter systems by a decentralized computational procedure. Approximate lumped parameter models are derived by using the Galerkin method employing the Legendre polynomials as the basis functions. The distributed parameter systems, however, are transformed into the large scale lumped parameter models. And thus, the decentralized control scheme is introduced to determine the optimal control inputs for the obtained lumped parameter models. In addition, an approach to block pulse functions is applied to solve the optimal control problems of the obtained lumped parameter models. The proposed method is simple and efficient in computation for the optimal control of distributed paramter systems. Illustrative examples given to demonstrate the validity of the presently proposed method. |