Title |
A Fixed-Point Error Analysis of fast DCT Algorithms |
Abstract |
The discrete cosine transform (DCT) is widely used in many signal processing areas, including image and speech data compression. In this paper, we investigate a fixed-point error analysis for fast DCT algorithms, namely, Lee [6], Hou [7] and Vetterli [8]. A statistical model for fixed-point error is analyzed to predict the output noise due to the fixed-point implementation. This paper deals with two's complement fixed-point data representation with truncation and rounding. For a comparison purpose, we also investigate the direct form DCT algorithm. We also propose a suitable scaling model for the fixed-point implementation to avoid an overflow occurring in the addition operation. Computer simulation results reveal that there is a close agreement between the theoretical and the experimental results. The result shows that Vetterli's algorithm is better than the other algorithms in terms of SNR. |