Title |
A Study on Dynamic Security Assessment by using the Data of Line Power Flows |
Keywords |
동대 안전성 평가 ; 임계 고장제거 시간 ; 역전파 신경회로망 ; 선로조류 ; 과도 안정도 ; |
Abstract |
This paper presents an application of artificial neural networks(ANN) to assess the dynamic security of power systems. The basic role of ANN is to provide assessment of the system's stability based on training samples from off-line analysi. The critical clearing time(CCT) is an attribute which provides significant information about the quality of the post-fault system behaviour. The function of ANN is a mapping of the pre-fault, fault-on, and post-fault system conditions into the CCT's. In previous work, a feed forward neural network is used to learn this mapping by using the generation outputs during the fault as the input data. However, it takes significant calculation time to make the input data through the network reduction at a fault as the input data. However, it takes significant calculation time to make the input data through the network reduction at a fault considered. In order to enhance the speed of security assessment, the bus data and line powers are used as the input data of the ANN in thil paper. Test results show that the proposed neural networks have the reasonable accuracy and can be used in on-line security assenssment efficiently. |