Title |
Fault Detection in an Automatic Central Air-Handling Unit |
Authors |
이원용(Lee, Won-Yong) ; 신동열(Shin, Dong-Ryul) |
Keywords |
Fault Detection ; Air handling Unit ; Residual ; Parameter Identification |
Abstract |
This paper describes the use of residual and parameter identification methods for fault detection in an air handling unit. Faults can be detected by comparing expected condition with the measured faulty data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system identification technique. In this study, AutoRegressive Moving Average with seXtrnal input(ARMAX) and AutoRegressive with eXternal input(ARX) models with both single-input/single-input and multi-input/single-input structures are examined. Model parameters are determined using the Kalman filter recursive identification method. Regression equations are calculated from normal experimental data and are used to compute expected operating variables. These approaches are tested using experimental data from a laboratory's variable-air-volume air-handling-unit. |