Title |
Real-Time Bus Reconfiguration Strategy for the Fault Restoration of Main Transformer Based on Pattern Recognition Method |
Keywords |
Substation Automation ; Bus Reconfiguration ; Pattern Recognition Method ; Substation Restoration |
Abstract |
This paper proposes an expert system based on the pattern recognition method which can enhance the accuracy and effectiveness of real-time bus reconfiguration strategy for the transfer of faulted load when a main transformer fault occurs in the automated substation. The minimum distance classification method is adopted as the pattern recognition method of expert system. The training pattern set is designed MTr by MTr to minimize the searching time for target load pattern which is similar to the real-time load pattern. But the control pattern set, which is required to determine the corresponding bus reconfiguration strategy to these trained load pattern set is designed as one table by considering the efficiency of knowledge base design because its size is small. The training load pattern generator based on load level and the training load pattern generator based on load profile are designed, which are can reduce the size of each training pattern set from max L/sup (m+f)/ to the size of effective level. Here, L is the number of load level, m and f are the number of main transformers and the number of feeders. The one reduces the number of trained load pattern by setting the sawmiller patterns to a same pattern, the other reduces by considering only load pattern while the given period. And control pattern generator based on exhaustive search method with breadth-limit is designed, which generates the corresponding bus reconfiguration strategy to these trained load pattern set. The inference engine of the expert system and the substation database and knowledge base is implemented in MFC function of Visual C++ Finally, the performance and effectiveness of the proposed expert system is verified by comparing the best-first search solution and pattern recognition solution based on diversity event simulations for typical distribution substation. |