Title |
Design of Main Transformer Fault Restoration Strategy Based on Pattern Clustering Method in Automated Substation |
Keywords |
Pattern Clustering ; Pattern Recognition ; Substation Automation System ; Main Transformer Fault |
Abstract |
Generally, the training set of maximum m×L(m+f) patterns in the pattern recognition method is required for the real-time bus reconfiguration strategy when a main transformer fault occurs in the distribution substation. Accordingly, to make the application of pattern recognition method possible, the size of the training set must be reduced as efficient level. This Paper proposes a methodology which obtains the minimized training set by applying the pattern clustering method to load patterns of the main transformers and feeders during selected period and to obtain bus reconfiguration strategy based on it. The MaxMin distance clustering algorithm is adopted as the pattern clustering method. The proposed method reduces greatly the number of load patterns to be trained and obtain the satisfactory pattern matching success rate because that it generates the typical pattern clusters by appling the pattern clustering method to load patterns of the main transformers and feeders during selected period. The proposed strategy is designed and implemented in Visual C++ MFC. Finally, availability and accuracy of the proposed methodology and the design is verified from diversity simulation reviews for typical distribution substation. |