Title |
New Diagnostic Technique and Device for Lightning Arresters by Analyzing the Wave Height Distribution of Leakage Currents |
Authors |
길경석 ; 한주섭 ; 송재영 ; 조한구 ; 한문섭 |
Keywords |
lightning arresters ; overvoltages ; deterioration diagnostic techniques ; wave height distribution ; leakage current detection unit ; mode of defects ; punctures |
Abstract |
Lightning arresters are deteriorated by repetition of protective operation against overvoltages or impulse currents in environments of its use. If a deteriorated arrester is left in power lines, it can lead to an accident such as a line to ground fault even in a normal system. Therefore, it is necessary to eliminate the deteriorated arrester in advance by checking the soundness of arresters on a regular basis, and to ensure the reliability of power systems by preventing accidents. Various deterioration diagnostic techniques and devices are suggested, and most of which measure leakage current components as an indicator of arrester ageing. However, the techniques based on the magnitude of leakage current measure simply RMS or peak value of leakage current components and do not provide detailed information needed in the diagnosis. In this study, we found that the wave height distributions of the total leakage currents are remarkably changed or a new wave height are produced with the progress of arrester deterioration. To propose a new technique for the diagnosis, we designed a leakage current detection unit and an analysis program which can measure leakage current magnitudes and analyze wave height distributions. From the experimental results, we confirmed that the proposed technique by analyzing the wave height distribution can simply diagnose the mode of defects such as a partial damage and an existence of punctures in arresters as well as deterioration of arresters. |