Title |
Analysis of Produced By-products Due to Oil/Paper Degradation on Power Transformers |
Authors |
김재훈(Kim, Jae-Hoon) ; 한상옥(Han, Sang-Ok) |
Keywords |
Furanic Compounds ; Thermal Degradation ; HPLC ; Transformer Oil-paper |
Abstract |
According to thermal degradation on power transformers, it is known that electrical, mechanical and chemical characteristics for power transformer's oil-paper are changed. In the chemical property, especially, when the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. Also the paper breakdown is accompanied by an increase in the content of various furanic compounds within the dielectric liquid. It is known that furanic components in transformer oil come only from the decomposition of insulating paper rather than from the oil itself. Therefore the analysis of furanic degradation products provides a complementary technique to dissolved gas analysis for monitoring transformers when we evaluate the aging of insulating paper by the total concentration of carbon monoxide and carbon dioxide dissolved in oil only. Recently, the analysis of furanic compounds by high performance liquid chromatography(HPLC) using IEC 61198 method for estimating degradation of paper insulation in power transformers has been used more conveniently for assessment of oil-paper. It is know that the main products which is produced by aging are 2-furfuryl alcohol, 2-furaldehyde(furfural), 2-furoic acid, 2-acetylfuran, 5-methyl-2-furaldehyde, and 5-hydroxymethyl-2-furaldehyde. For investigating the accelerated aging process of oil-paper samples we manufactured accelerating aging equipment and we estimated variation of insulations at 140°C temp. during 500 hours. Typical transformer proportions of copper, silicon steel and iron have been added to oil-paper insulation during the aging process. The oil-paper insulation samples have been measured at intervals of 100 hours. Finally we have analyzed that 2-furoic acid and 2-acetylfuran products of furanic compounds were detected by HPLC, and their concentrations were increased with accelerated aging time. |