• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (Dept. of Aerospace Information Engineering Konkuk University, Korea.)



Bridge, GPS-challenge, Point Cloud Data, Integrated Navigation

1. ์„œ ๋ก 

ํ˜„์žฌ ์‹œ์„ค๋ฌผ ์ ๊ฒ€์— ๋ฌด์ธ์ด๋™์ฒด(๋“œ๋ก )๋ฅผ ํ™œ์šฉํ•˜๋Š” ์‚ฌ๋ก€๊ฐ€ ๋Š˜๊ณ  ์žˆ๋‹ค. ์‚ฌ๋žŒ์˜ ์ ‘๊ทผ์ด ํž˜๋“  ์ง€์—ญ๋„ ์ ๊ฒ€ํ•  ์ˆ˜ ์žˆ์–ด ์ ๊ฒ€ ์‚ฌ๊ฐ์ง€๋Œ€๋ฅผ ํ•ด์†Œํ•˜๋Š” ๋™์‹œ์— ์ž‘์—…์ž์˜ ์•ˆ์ „์„ ๋ณด์žฅํ•˜๋ฉฐ ์—…๋ฌด ํšจ์œจ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ด๋Ÿฌํ•œ ์žฅ์ ์œผ๋กœ ์ธํ•ด ์†ก์ „ํƒ‘(1-2), ๊ต๋Ÿ‰(3-11) ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์‹œ์„ค๋ฌผ ์ ๊ฒ€์— ๋ฌด์ธ์ด๋™์ฒด๋ฅผ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ ๊ฒ€ ๋Œ€์ƒ๋ฌผ์˜ ๊ท ์—ด ๊ฒ€์ถœ(1)์ด๋‚˜ ์ž„๋ฌด ํŠน์„ฑ์ƒ ์‹œ์„ค๋ฌผ๊ณผ์˜ ์ถฉ๋Œ ์œ„ํ—˜์„ ๋ฐฉ์ง€ํ•˜๊ณ  ์ตœ์  ๊ฒ€์‚ฌ๊ฒฝ๋กœ๋ฅผ ๋„์ถœํ•˜๋Š” ์—ฐ๊ตฌ(2-4), ์‹œ์„ค๋ฌผ ํ™˜๊ฒฝ์— ์ตœ์ ํ™”๋œ ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋กœ๋ด‡ ๊ฐœ๋ฐœ(5)์„ ๋Œ€ํ‘œ์ ์ธ ์—ฐ๊ตฌ์‚ฌ๋ก€๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

๊ต๋Ÿ‰๊ณผ ๊ฐ™์€ ์‹œ์„ค๋ฌผ ์ ๊ฒ€์— ๋“œ๋ก ์„ ํ™œ์šฉํ•  ๊ฒฝ์šฐ ๋…ธ๋™๋ ฅ๊ณผ ์ ๊ฒ€ ๋น„์šฉ ๊ฐ์†Œ ๋“ฑ์— ๋Œ€ํ•œ ์ด์ (6-7)์ด ์žˆ์ง€๋งŒ, ๋น„ํ–‰ ์•ˆ์ •์„ฑ๊ณผ ๋น„ํ–‰์‹œ๊ฐ„ ๋“ฑ ์šด์šฉ์ƒ์˜ ์–ด๋ ค์›€์ด ์กด์žฌํ•œ๋‹ค. ํฌ๊ณ  ๋ฌด๊ฑฐ์šด ๋น„ํ–‰์ฒด๋Š” ์™ธํ’์— ๊ฐ•์ธํ•˜์ง€๋งŒ ๋ฌด๊ฒŒ๋กœ ์ธํ•ด ๋น„ํ–‰์‹œ๊ฐ„์ด ์งง๊ณ , ์ž‘๊ณ  ๊ฐ€๋ฒผ์šด ๋น„ํ–‰์ฒด๋Š” ๊ธด ๋น„ํ–‰์‹œ๊ฐ„์„ ๊ฐ–์ง€๋งŒ ๋ฐ”๋žŒ์— ๋” ๋ฏผ๊ฐํ•˜๋‹ค. ๋˜ํ•œ, ๋“œ๋ก ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ธฐ๊ณ„์  ์ง„๋™์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋น„ํ–‰์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š์ง€๋งŒ, ์ ๊ฒ€ ์˜์ƒ์˜ ์„ ๋ช…๋„ ํ•˜๋ฝ ๋ฐ ์กฐ์ข…์˜ ์–ด๋ ค์›€์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ๋‚œ๋ฅ˜ ๋˜๋Š” ์˜ˆ์ธก ๋ถˆ๊ฐ€๋Šฅํ•œ ์™ธํ’์„ ์œ ๋ฐœํ•˜๋Š” ๊ต๋Ÿ‰ ํ•˜๋ถ€ ํ™˜๊ฒฝ์—์„œ๋Š” ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค(8). ๋˜ํ•œ, ์ž„๋ฌด์žฅ๋น„ ๋Œ€๋ถ€๋ถ„์ด ๋น„ํ–‰์ฒด ์•„๋ž˜์— ํƒ‘์žฌ๋˜์–ด ๊ต๋Ÿ‰ ํ•˜๋‹จ์„ ํ–ฅํ•ด ์˜ฌ๋ ค๋‹ค๋ณด๋Š” ์ดฌ์˜์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค(7).

๋ง๋ถ™์—ฌ ์‹œ์„ค๋ฌผ ์ ๊ฒ€์— ๋„๋ฆฌ ์“ฐ์ด๋Š” ๋“œ๋ก ์€ GNSS/INS ๊ฒฐํ•ฉ ํ•ญ๋ฒ•์œผ๋กœ ์œ„์„ฑํ•ญ๋ฒ•์— ๋Œ€ํ•œ ์˜์กด์„ฑ์ด ๋งค์šฐ ๋†’๋‹ค. ์ด๋Ÿฌํ•œ ๋“œ๋ก ์ด ๋„๋กœ๋‚˜ ์ฒ ๊ธธ ๋“ฑ๊ณผ ๊ฐ™์€ ๊ต๋Ÿ‰ ์‹œ์„ค๋ฌผ ํ•˜๋ถ€์— ์œ„์น˜ํ•  ๊ฒฝ์šฐ ์œ„์„ฑํ•ญ๋ฒ•์˜ ์‹ ํ˜ธํ’ˆ์งˆ์ด ์ €ํ•˜๋˜๊ฑฐ๋‚˜ ์ˆ˜์‹ ์ด ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. ๊ต๋Ÿ‰ ์ ๊ฒ€์„ ์œ„ํ•œ ๋“œ๋ก ์„ ๋„์ž…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์œ„์„ฑ ์Œ์˜์ง€์—ญ์— ๋Œ€ํ•œ ์œ„์น˜์ถ”์ •(Localization)์ด ํ•ด๊ฒฐ๋˜์–ด์•ผ ํ•  ์ฃผ์š” ์ด์Šˆ์ด๋‹ค(6-8).

์ด๋Ÿฌํ•œ ์œ„์„ฑํ•ญ๋ฒ•์˜ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ํ•ญ๋ฒ• ์—ฐ๊ตฌ๋„ ํ™œ๋ฐœํ•˜๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ ์ฃผ๋ณ€ ๋งต์„ ์ƒ์„ฑํ•˜๋ฉด์„œ ์ด๋™์ฒด์˜ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๋Š” SLAM(Simultaneous Localization And Mapping) ์—ฐ๊ตฌ(9)๋‚˜ ๋งต ์ƒ์„ฑ ๊ณผ์ • ์—†์ด ์ธก์œ„(Localization) ๊ธฐ๋ฒ•(10)์ด ์žˆ๋‹ค.

์ฐธ๊ณ ๋ฌธํ—Œ (9)๋Š” ๊ต๋Ÿ‰ ์ ๊ฒ€์šฉ ๋“œ๋ก ์„ ์œ„ํ•œ 3D ๋ผ์ด๋‹ค(LiDAR)์™€ ๋‹จ์•ˆ ์นด๋ฉ”๋ผ๋ฅผ ์‚ฌ์šฉํ•œ ๊ทธ๋ž˜ํ”„(Graph) ๊ธฐ๋ฐ˜ SLAM ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์†Œ๊ฐœํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ SLAM์€ ๊ทธ๋ž˜ํ”„ ๊ตฌ์„ฑ๊ณผ ์ตœ์ ํ™” ๊ณผ์ •์œผ๋กœ ์ˆ˜ํ–‰๋œ๋‹ค. ๋“œ๋ก ์˜ ํฌ์ฆˆ(pose) ์ •๋ณด๊ฐ€ ๋…ธ๋“œ(node)๊ฐ€ ๋˜๊ณ  ๊ฐ ๋…ธ๋“œ ๊ฐ„ ์—ฐ๊ฒฐ์€ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ธก์ •๋œ ์ƒ๋Œ€์  ํฌ์ฆˆ์ •๋ณด์ธ ์—ฃ์ง€(edge)๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์นด๋ฉ”๋ผ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ์ƒ๋Œ€์ •๋ณด๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด semi-direct method๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , 3D ๋ผ์ด๋‹ค์˜ ์ ๊ตฐ ๋ฐ์ดํ„ฐ๋กœ๋Š” ICP(Iterative Closest Point) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ์ œ์•ฝ์กฐ๊ฑด์„ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. ๊ตฌ์„ฑ๋œ ๊ทธ๋ž˜ํ”„ ์ตœ์ ํ™”์—๋Š” sparse linear algebra method๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ ๋“œ๋ก  ํฌ์ฆˆ๋ฅผ ์ถ”์ •ํ•˜์˜€๋‹ค.

์ฐธ๊ณ ๋ฌธํ—Œ (10)์€ ๊ต๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ ์ž„๋ฌด์ˆ˜ํ–‰์„ ์œ„ํ•œ ๊ฒฝ๋กœ๊ณ„ํš๊ณผ ํ•ญ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ๋ณธ ๋ฌธํ—Œ์—์„œ๋Š” ๊ต๋Ÿ‰์„ ๋ณด(girder), ๊ธฐ๋‘ฅ(column), ์ƒ๋ถ€(top), ํ•˜๋ถ€(bottom)์˜ 4๊ฐ€์ง€ ์ฃผ์š” ๊ตฌ์—ญ์œผ๋กœ ๋‚˜๋ˆ„๊ณ , Global Planner์—์„œ GTSP(Generalized Traveling Salesperson Problem) ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋น„ํ–‰๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ๊ฐ ๊ตฌ์—ญ๋ณ„ Local Navigation Routines์œผ๋กœ ๋น„ํ–‰ํ•œ๋‹ค. ์œ„์น˜์ถ”์ •์—๋Š” ์ˆ˜ํ‰, ์ˆ˜์ง์œผ๋กœ ์žฅ์ฐฉ๋œ 2๊ฐœ์˜ 2D ๋ผ์ด๋‹ค๋กœ๋ถ€ํ„ฐ ์ธก์ •๋œ ์ ๊ตฐ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ์ ๊ตฐ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ Hough Transform ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๊ต๋Ÿ‰๊ณผ์˜ ์ตœ์  ์ ํ•ฉ์„ ์„ ์ฐพ๊ณ  ํ‘œ๋ฉด์œผ๋กœ๋ถ€ํ„ฐ์˜ ์ƒ๋Œ€์  ์œ„์น˜๋ฅผ ์ถ”์ •ํ•œ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด ๊ต๋Ÿ‰ ํ•˜๋ถ€ ๋ณตํ•ฉํ•ญ๋ฒ•์—ฐ๊ตฌ์™€ ๋‹ฌ๋ฆฌ ์ œํ•œ๋œ ์ฐจ์›์˜ ์ ๊ตฐ ๋ฐ์ดํ„ฐ์™€ ๊ต๋Ÿ‰ ๋งต ์ •๋ณด๋ฅผ ๊ฒฐํ•ฉํ•œ ์œ„์„ฑ ์Œ์˜์ง€์—ญ ๋ณตํ•ฉํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ํŠนํžˆ ์ข…๋ž˜์˜ SLAM ์—ฐ๊ตฌ์— ์ฃผ๋กœ ํ™œ์šฉ๋œ 3์ฐจ์› ๋ผ์ด๋‹ค ์„ผ์„œ๋ฅผ ๋Œ€์ฒดํ•˜์—ฌ 2์ฐจ์› ์ ๊ตฐ ์„ผ์„œ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์˜ ์‹ค์‹œ๊ฐ„์„ฑ ๊ตฌํ˜„์„ ์„ค๊ณ„์— ๋ฐ˜์˜ํ•˜์˜€๋‹ค.

๋‚˜์•„๊ฐ€ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์œ„์„ฑํ•ญ๋ฒ•์„ ์ œ์™ธํ•œ ๋‹จํŽธ์  ์กฐ๊ฑด๋งŒ ๋‹ค๋ฃจ๊ณ  ์žˆ์ง€๋งŒ, ์‹ค์ œ ํ™˜๊ฒฝ์€ ์œ„์„ฑ์ด ๊ฐ€์šฉํ•œ ์ง€์—ญ๊ณผ ๋น„๊ฐ€์šฉ ๊ตฌ์—ญ์ด ํ˜ผ์žฌ๋˜์–ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ„์„ฑ์˜ ๊ฐ€์šฉ์„ฑ ์—ฌ๋ถ€์— ๋”ฐ๋ผ ์ ํ•ฉํ•œ ํ•ญ๋ฒ• ๋ชจ๋“œ ์ „ํ™˜๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ด์ข… ํ•ญ๋ฒ• ๊ตฌ์„ฑ์— ๋”ฐ๋ฅธ ์—ฐ์†์  ํ•ญ๋ฒ• ์„ฑ๋Šฅ ๋ถ„์„๋„ ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘ํ•œ ๊ต๋Ÿ‰ ๊ธฐ๋‘ฅ์„ ๋ชจ๋ธ๋งํ•˜์—ฌ ๊ฐ๊ฐ์— ๋Œ€ํ•œ ํ•ญ๋ฒ• ์„ฑ๋Šฅ๋„ ์ œ์‹œํ•˜์˜€๋‹ค.

๋ณธ ์—ฐ๊ตฌ์˜ ์ฃผ์š” ๊ณตํ—Œ์ ์„ ์ •๋ฆฌํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

โฆ์œ„์„ฑํ•ญ๋ฒ• ์Œ์˜ ๊ต๋Ÿ‰ ํ•˜๋ถ€์—์„œ์˜ ์ œํ•œ๋œ ์ฐจ์›์˜ ์ ๊ตฐ์„ผ์„œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ•ญ๋ฒ• ์„ฑ๋Šฅ ์ œ์‹œ

โฆ๊ต๋Ÿ‰ ๊ธฐ๋‘ฅ์˜ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ๋ณ„ ํ•ญ๋ฒ• ์„ฑ๋Šฅ ๊ฒ€์ฆ

โฆ๋งต ๋‹จ์ˆœํ™”๋ฅผ ํ†ตํ•œ ์—ฐ์‚ฐ๋Ÿ‰ ๊ฐ์†Œ ๋ฐ ์„ฑ๋Šฅ ๋ถ„์„

๋ณธ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 2์žฅ์—์„œ ๊ต๋Ÿ‰ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•œ ๋ณตํ•ฉํ•ญ๋ฒ•์„ ์„ค๊ณ„ํ•˜๊ณ , 3์žฅ์—์„œ ํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ค๋ช…ํ•œ๋‹ค. 4์žฅ์—์„œ ์ œ์•ˆ๋œ ๋ณตํ•ฉํ•ญ๋ฒ• ๊ฒ€์ฆ์„ ์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ๊ณผ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜๊ณ , ๋งˆ์ง€๋ง‰ 5์žฅ์—์„œ ๊ฒฐ๋ก ์„ ๋งบ๊ณ  ๋งˆ์นœ๋‹ค.

2. ๊ต๋Ÿ‰ํ™˜๊ฒฝ ๋ชจ๋ธ๋ง ๋ฐ ๋ณตํ•ฉํ•ญ๋ฒ• ์„ค๊ณ„

2.1 ๊ต๋Ÿ‰ ํ™˜๊ฒฝ ๋ชจ๋ธ๋ง

์ฃผ๋ณ€ ํ™˜๊ฒฝ์€ ๊ฒฉ์ž(Grid) ๋˜๋Š” ๋‹ค๋ฉด์ฒด(Polygon mesh) ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋ผ์ด๋‹ค๋ฅผ ํ™œ์šฉํ•œ ์œ„์น˜์ถ”์ •์˜ ๊ฒฝ์šฐ Occupancy Grid Map์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ผ์ •ํ•œ ํฌ๊ธฐ์˜ ๊ณต๊ฐ„์„ ์…€(cell) ๋‹จ์œ„๋กœ ๋‚˜๋ˆ„์–ด ํŠน์ • ๋ฌผ์ฒด๋‚˜ ์žฅ์• ๋ฌผ์ด ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ ๊ฐ ์…€์„ ์ ์œ (occupy)๋กœ ํ‘œํ˜„ํ•˜๊ณ  ๋น„์–ด์žˆ๋Š” ๊ฒฝ์šฐ ๋น„์ ์œ (free)๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋Ÿฌํ•œ ๋งต ํ˜•ํƒœ๋Š” ์ง€ํ˜•์ง€๋ฌผ๊ณผ ์ ๊ตฐ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ๋งค์นญ ๋ฐฉ๋ฒ•์— ์ด์ ์ด ์žˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋งค์นญ ๋ฐฉ๋ฒ•์ด ์•„๋‹Œ ๋ฌผ์ฒด์™€ ์ ๊ตฐ ๋ฐ์ดํ„ฐ ๊ฐ„ ๊ธฐํ•˜๊ด€๊ณ„๋ฅผ ์ด์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ผญ์ง€์ (Vertex)๊ณผ ๋ฉด(Face)์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๋‹ค๋ฉด์ฒด ํ˜•ํƒœ๋กœ 3D ๋งต์„ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์‹ค์ œ ๊ฒฝ์ฃผ์— ์œ„์น˜ํ•œ ์ฒ ๋„๊ต๋Ÿ‰ โ€œ์›”์‚ฐ๊ตโ€๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ๋ชจ๋ธ๋งํ•˜๊ณ , ์ถ”ํ›„ ํ•ญ๊ณต์ดฌ์˜์ด๋‚˜ ๋“œ๋ก  ๋งคํ•‘(Mapping) ๋“ฑ์„ ์ด์šฉํ•˜์—ฌ ์ œ์ž‘ํ•œ 3D ๋ชจ๋ธ์˜ ์ ์šฉ๋„ ๊ณ ๋ คํ•˜์—ฌ 3์ฐจ์› ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๊ตญ์ œ ํ‘œ์ค€ ํ˜•์‹ ์ค‘ ํ•˜๋‚˜์ธ STL๋กœ ์ €์žฅํ•˜์˜€๋‹ค. ์ƒ์„ฑ๋œ 3D ๋งต์€ ๊ทธ๋ฆผ 1์— ๋„์‹œํ•˜์˜€๋‹ค. ๊ต๋Ÿ‰ ์ƒ๋ถ€๋Š” ์™•๋ณต 2์ฐจ์„  ์„ ๋กœ๊ฐ€ ํ†ต๊ณผํ•˜๋Š” 14m ํญ์„ ๊ฐ€์ง€๋ฉฐ, ๊ต๋Ÿ‰ ํ•˜๋ถ€๋Š” ์ง€๋ฆ„ 5m์ธ ์›๊ธฐ๋‘ฅ์ด 39.975m ๊ฐ„๊ฒฉ์œผ๋กœ ๋ฐฐ์น˜๋˜์–ด ์žˆ๋‹ค.

๊ทธ๋ฆผ. 1. ๊ต๋Ÿ‰ํ™˜๊ฒฝ 3D ๋ชจ๋ธ๋ง

Fig. 1. Bridge 3D Model

../../Resources/kiee/KIEE.2020.69.12.1970/fig1.png

๊ทธ๋ฆผ. 2. ๋ณตํ•ฉํ•ญ๋ฒ• ๊ตฌ์กฐ๋„

Fig. 2. Structure of proposed navigation system

../../Resources/kiee/KIEE.2020.69.12.1970/fig2.png

2.2 ๊ต๋Ÿ‰ํ™˜๊ฒฝ ํ•ญ๋ฒ• ๊ตฌ์กฐ ์„ค๊ณ„

๊ต๋Ÿ‰ ์‹œ์„ค๋ฌผ ์ ๊ฒ€์„ ์œ„ํ•œ ๋“œ๋ก ์ด ๊ต๋Ÿ‰ ํ•˜๋ถ€์— ์œ„์น˜ํ•  ๊ฒฝ์šฐ ์ƒํŒ๊ณผ ์ฃผ๋ณ€ ๊ธฐ๋‘ฅ์œผ๋กœ ์ธํ•ด ์œ„์„ฑ์˜ ๊ฐ€์‹œ์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. ๊ฐ€์‹œ์œ„์„ฑ ์ˆ˜์˜ ๊ฐ์†Œ๋Š” ์œ„์น˜ ์˜ค์ฐจ์˜ ์ฆ๊ฐ€๋ฅผ ์œ ๋ฐœํ•˜๊ฒŒ ๋˜๊ณ  ํ•ญ๋ฒ• ์„ฑ๋Šฅ์ด ์•…ํ™”๋œ๋‹ค. ๊ต๋Ÿ‰ ์ฃผ๋ณ€์—์„œ ๋“œ๋ก  ์ž„๋ฌด ์ˆ˜ํ–‰ ์‹œ ์œ„์„ฑํ•ญ๋ฒ•์ด ๊ฐ€์šฉํ•œ ์ง€์—ญ๊ณผ ๋น„๊ฐ€์šฉ ๊ตฌ์—ญ ๋ชจ๋‘ ๋น„ํ–‰ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ GNSS/INS ๋‹จ์ผ ํ•ญ๋ฒ•์œผ๋กœ๋Š” ๋ชจ๋“  ๊ตฌ์—ญ์— ๋Œ€ํ•ด ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•  ์ˆ˜ ์—†๋‹ค. ์ฆ‰, ๊ต๋Ÿ‰ ํ™˜๊ฒฝ์— ๋“œ๋ก ์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์œ„์„ฑ ์Œ์˜์ง€์—ญ์— ๋Œ€ํ•œ ํ•ญ๋ฒ• ํ•ด๊ฒฐ์ด ํ•„์š”ํ•˜๋‹ค(6-8).

๊ทธ๋ฆผ. 3. 3D ๋งต๊ณผ ์ ๊ตฐ ๋ฐ์ดํ„ฐ ์‚ฌ์ด ๊ธฐํ•˜๊ด€๊ณ„[12]

Fig. 3. Geometry between a point cloud and map

../../Resources/kiee/KIEE.2020.69.12.1970/fig3.png

์œ„์„ฑ ๊ฐ€์šฉ ๋ฐ ๋น„๊ฐ€์šฉ ๊ตฌ์—ญ์ด ํ˜ผ์žฌํ•˜๋Š” ๋ณตํ•ฉ์  ํ™˜๊ฒฝ์—์„œ ์—ฐ์†์ ์ธ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ๊ตฌ์—ญ์— ๋”ฐ๋ฅธ ์ ํ•ฉํ•œ ํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ ์šฉ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ„์„ฑ ์Œ์˜์ง€์—ญ์— ๋”ฐ๋ฅธ ํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋ณ„๋„ ๊ตฌ์„ฑํ•˜์—ฌ ๊ตฌ์—ญ๋ณ„ ํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋ณ€๊ฒฝ๋˜๋„๋ก ํ•ญ๋ฒ• ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ถฉ๋ถ„ํ•œ ๊ฐ€์‹œ์œ„์„ฑ ์ˆ˜ ํ™•๋ณด๊ฐ€ ๊ฐ€๋Šฅํ•œ ๊ต๋Ÿ‰ ์ƒ๋ถ€ ๋˜๋Š” ์™ธ๊ณฝ์—์„œ๋Š” ์ผ๋ฐ˜์ ์ธ GNSS/INS ๊ฒฐํ•ฉ ํ•ญ๋ฒ•์œผ๋กœ ๋น„ํ–‰์„ ํ•˜๋‹ค๊ฐ€, ๊ต๋Ÿ‰ ํ•˜๋ถ€์™€ ๊ฐ™์ด ์œ„์„ฑํ•ญ๋ฒ•์˜ ๋น„๊ฐ€์šฉ ์ƒํ™ฉ ๋ฐœ์ƒ ์‹œ ์œ„์„ฑํ•ญ๋ฒ•์„ ์ œ์™ธํ•œ ์ ๊ตฐ ๊ธฐ๋ฐ˜ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ•์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„ํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋งž์ถฐ ์ œ์•ˆํ•œ ๋ณตํ•ฉํ•ญ๋ฒ• ๊ตฌ์กฐ๋Š” ๊ทธ๋ฆผ 2์™€ ๊ฐ™๋‹ค.

3. ๊ต๋Ÿ‰ํ™˜๊ฒฝ ์ ๊ตฐ๊ธฐ๋ฐ˜ ๋ณตํ•ฉํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜

3.1 ์ ๊ตฐ ๋ฐ์ดํ„ฐ ๊ด€์ธก๋ชจ๋ธ

์นผ๋งŒํ•„ํ„ฐ ๊ฒฐํ•ฉ์„ ์œ„ํ•œ GNSS ์ธก์ •์น˜ ๋ชจ๋ธ์€ ๋„๋ฆฌ ์•Œ๋ ค์ง„ GNSS/INS ์•ฝ๊ฒฐํ•ฉ(Loosely Coupled) ๋ฐฉ๋ฒ•(14)์œผ๋กœ ๊ตฌ์„ฑํ•˜๊ณ , ์œ„์„ฑ ์Œ์˜์ง€์—ญ์—์„œ์˜ ํ•ญ๋ฒ•์„ ์œ„ํ•œ 3D ๋งต๊ณผ ์ ๊ตฐ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ธก์ •์น˜ ๋ชจ๋ธ์€ ์ด์ „ ์—ฐ๊ตฌ(12)์˜ ๊ฑฐ๋ฆฌ์„ผ์„œ ๋ชจ๋ธ์„ ์ฐธ๊ณ ํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ 3์€ ๋“œ๋ก ์œผ๋กœ๋ถ€ํ„ฐ ์ธก์ •๋œ ์ ๊ตฐ ๋ฐ์ดํ„ฐ์™€ ์ฃผ๋ณ€ ๋งต ๊ณผ์˜ ๊ธฐํ•˜๊ด€๊ณ„๋ฅผ ๋„์‹œํ•œ ๊ฒƒ์ด๋ฉฐ, ์ด๋•Œ ํ•˜๋‚˜์˜ ์ ๊ตฐ ์ธก์ •์น˜์— ๋Œ€ํ•œ 3D ๋งต ๊ณผ์˜ ๊ด€๊ณ„์‹์€ ์‹(1)๊ณผ ๊ฐ™๋‹ค.

(1)
$\hat{r}_{i}=h_{r_{i}}(x)=\frac{\vec{o}_{r_{1}}^{T} \cdot\left(T_{r_{1}}-p^{n}\right)}{\vec{o}_{r_{1}}^{T} \cdot\left(C_{b}^{n} \cdot \vec{d}_{r_{1}}^{b}\right)}$

$\hat{r}_{i}$๋Š” ์ฃผ๋ณ€ ๋งต๊ณผ ๋“œ๋ก  ์‚ฌ์ด ์ถ”์ •๋œ ๊ฑฐ๋ฆฌ๊ฐ’์ด๋ฉฐ, $\vec{o}_{r_{1}}^{T}$๋Š” ๋ฒˆ์งธ ์ ๊ตฐ ๋ฐ์ดํ„ฐ๊ฐ€ ์ธก์ •๋œ ๋ฉด์˜ ์ˆ˜์ง๋ฒกํ„ฐ์™€ ๊ผญ์ง€์ ์ด๋‹ค. $\vec{d}_{r_{1}}^{b}$๋Š” Body-frame์ƒ ์ ๊ตฐ ๋ฐ์ดํ„ฐ์˜ ๋ฐฉํ–ฅ๋ฒกํ„ฐ๋ฅผ, $p^n$๋Š” Navigation-frame์ƒ์˜ ๋“œ๋ก  ์œ„์น˜, $C_{b}^{n}$๋Š” b-frame์—์„œ n-frame์œผ๋กœ์˜ DCM (Directional Cosine Matrix)์„ ์˜๋ฏธํ•œ๋‹ค.

์•ž์„  ์ˆ˜์‹์„ ์„ ํ˜•ํ™”ํ•˜์—ฌ ๊ตฌํ•œ ๊ด€์ธกํ–‰๋ ฌ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

(2)
$H_{P C, i}=\frac{\partial \hat{r}_{i}}{\partial x}=\left[\frac{\delta r_{i}}{\delta p^{n}} 0_{1 \times 3} \frac{\delta r_{i}}{\delta \psi^{n}} 0_{1 \times 3} 0_{1 \times 3}\right]$

(3)
$\frac{\delta r_{i}}{\delta p^{n}}=\left[\frac{-\vec{o}_{r_{1}}^{T}}{\overrightarrow{o_{r_{1}}^{T}} \cdot\left(C_{b}^{n} \cdot \vec{d}_{r_{i}}^{b}\right)}\right]$

(4)
$\frac{\delta r_{i}}{\delta \psi^{n}}=\left[-\frac{\vec{o}_{r_{1}}^{T} \cdot\left(T_{r_{1}}-p^{n}\right)}{\left(\vec{o}_{r_{1}}^{T} \cdot\left(C_{b}^{n} \cdot \vec{d}_{r_{i}}^{b}\right)\right)^{2}} \cdot \vec{o}_{r_{1}}^{T} \cdot\left[\times C_{b}^{n} \cdot \vec{d}_{r_{i}}^{b}\right]\right]$

์œ„ ์ˆ˜์‹์€ ์ž„์˜์˜ ${i}$๋ฒˆ์งธ ์ ๊ตฐ ๋ฐ์ดํ„ฐ๋งŒ์„ ํ‘œํ˜„ํ•˜๊ณ  ์žˆ๋‹ค. ์ฃผ๋ณ€ ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ์ธก์ •๋˜๋Š” ์ ๊ตฐ ์ˆ˜๋Š” ๋ณ€ํ•˜๋ฉฐ ์ธก์ •์น˜ ${z}$ ๋ฐ ๊ด€์ธกํ–‰๋ ฌ ${H}$๋Š” ์ ๊ตฐ ์ˆ˜๋งŒํผ ๋ˆ„์ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ€์šฉํ•œ ์ ๊ตฐ ์ˆ˜์— ๋”ฐ๋ผ ํ–‰๋ ฌ์˜ ํฌ๊ธฐ๊ฐ€ ๊ฐ€๋ณ€์ ์ด๋‹ค. ์ธก์ •์น˜ ์žก์Œ ${R}$ ๋˜ํ•œ ์ ๊ตฐ ์ˆ˜์— ๋”ฐ๋ผ ํฌ๊ธฐ๊ฐ€ ๋‹ฌ๋ผ์ง€๋ฉฐ, ํ•˜๋‚˜์˜ ์„ผ์„œ์—์„œ ์ธก์ •๋œ ์ ๊ตฐ ๋ฐ์ดํ„ฐ์˜ ์žก์Œ์€ ๋ชจ๋‘ ๊ฐ™๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

(5)
$z_{P C}=\left[\begin{array}{c}r_{1} \\ r_{2} \\ \vdots \\ r_{i}\end{array}\right], R_{P C}=\left[\begin{array}{cccc}R_{r_{1}} & 0 & 0 & 0 \\ 0 & R_{r_{1}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & R_{r_{i}}\end{array}\right], H_{P C}=\left[\begin{array}{c}H_{P C, 1} \\ H_{P C, 2} \\ \vdots \\ H_{P C, i}\end{array}\right]$

3.2 EKF(Extended Kalman Filter) ๊ตฌ์„ฑ

์นผ๋งŒํ•„ํ„ฐ ๊ตฌ์„ฑ์„ ์œ„ํ•ด 15์ฐจ ์ƒํƒœ๋ณ€์ˆ˜(state)๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜ํ•˜์˜€๋‹ค.

(6)
$\delta x=\left[\delta p^{n} \delta v^{n} \delta \psi^{n} \delta b_{a} \delta b_{g}\right]_{15 \times 1}^{T}$

${p,v,\psi}$๋Š” ๊ฐ๊ฐ n-frame์—์„œ์˜ ์œ„์น˜, ์†๋„, ์ž์„ธ๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ, $b_{a}$๋Š” ๊ฐ€์†๋„ ๋ฐ”์ด์–ด์Šค, $b_{g}$๋Š” ๊ฐ์†๋„ ๋ฐ”์ด์–ด์Šค ํ•ญ์ด๋‹ค. ์ด๋•Œ ๊ฐ ๋ฌธ์ž์—ด ์•ž์˜ $\delta$๋Š” ์ฐธ๊ฐ’๊ณผ ์ถ”์ •๊ฐ’์˜ ์ฐจ์ธ ์˜ค์ฐจ๋ฅผ ์˜๋ฏธํ•œ๋‹ค.

ํ‘œ 1. ๋ณตํ•ฉํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ˆ˜์‹

Table 1. Algorithm Equations

Predict)

$\quad$

$P_{k}^{-}=A \cdot P_{k-1} \cdot A^{T}+B \cdot Q \cdot B^{T} k$

$\quad$

$x_{k}^{-}=f\left(x_{k-1}, u\right)$

GNSS Update)

$\quad$

$K_{k}=P_{k}^{-} \cdot H_{G N S S}^{T} \cdot\left(H_{G N S S} \cdot P_{k}^{-} \cdot H_{G N S S}^{T}+R_{G N S S}\right)^{T}$

$\quad$

$P_{k}=P_{k}^{-}-K_{k} \cdot H_{G N S S} \cdot P_{k}^{-}$

$\quad$

$x_{k}=x_{k}^{-}+K_{k} \cdot\left(z_{G N S S, k}-h\left(x_{k}^{-}\right)\right)$

Point Clouds Update)

$\quad$

$K_{k}=P_{k}^{-} \cdot H_{P C}^{T} \cdot\left(H_{P C} \cdot P_{k}^{-} \cdot H_{P C}^{T}+R_{P C}\right)^{T}$

$\quad$

$P_{k}=P_{k}^{-}-K_{k} \cdot H_{P C} \cdot P_{k}^{-}$

$\quad$

$x_{k}=x_{k}^{-}+K_{k} \cdot\left(z_{P C, k}-h\left(x_{k}^{-}\right)\right)$

๋ณตํ•ฉํ•ญ๋ฒ•์— ๋Œ€ํ•œ EKF ์ตœ์ข… ์ˆ˜์‹์€ ์•„๋ž˜์™€ ๊ฐ™๋‹ค. ์•„๋ž˜์ฒจ์ž GNSS๋Š” ์œ„์„ฑํ•ญ๋ฒ•์œผ๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง„ ๋ชจ๋ธ์„ ์˜๋ฏธํ•˜๋ฉฐ, PC(Point Clouds)๋Š” ์ ๊ตฐ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ธก์ •์น˜ ๋ชจ๋ธ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ฐ ํ•ญ๋ฒ•์˜ ์ƒํƒœ๋ณ€์ˆ˜๊ฐ€ ๋™์ผํ•˜๊ฒŒ ์ •์˜๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ์ธก์ •์น˜ ๋ชจ๋ธ์ด ๋ณ€๊ฒฝ๋˜์–ด๋„ ์ƒํƒœ๋ณ€์ˆ˜์™€ ๊ณต๋ถ„์‚ฐ(Covariance)์„ ๊ทธ๋Œ€๋กœ ์ „ํŒŒํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ. 4. ๊ธฐ๋‘ฅ ํ˜•ํƒœ๋ณ„ ์ ๊ตฐ ์ธก์ •์น˜ ์˜ˆ์‹œ

Fig. 4. Example of point clouds data by column type

../../Resources/kiee/KIEE.2020.69.12.1970/fig4.png

3.3 ์ ๊ตฐ ํŠน์ง•์  ๊ธฐ๋ฐ˜ ์„ฑ๋Šฅ ๊ฐœ์„ 

๊ต๋Ÿ‰ ์‹œ์„ค๋ฌผ์€ ์›, ํƒ€์›, ์‚ฌ๊ฐํ˜• ๋“ฑ ๋‹ค์–‘ํ•œ ๋ชจ์–‘์˜ ๊ธฐ๋‘ฅ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ์ด์ „ ์—ฐ๊ตฌ(11-12)์—์„œ ๋งต ์—ฐ๋™ ๋ณตํ•ฉํ•ญ๋ฒ• ์„ฑ๋Šฅ์ด ๋งต ์ƒ ํฌํ•จ๋œ ๋“œ๋ก  ์ฃผ๋ณ€ ์žฅ์• ๋ฌผ์˜ ๋ฐฐ์น˜ ๋ฐ ํ˜•ํƒœ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ–ˆ๋‹ค.

๊ทธ๋ฆผ 4๋Š” ์‚ฌ๊ฐํ˜•ํƒœ์˜ ๊ธฐ๋‘ฅ์„ ๊ฐ–๋Š” ๊ต๋Ÿ‰ํ™˜๊ฒฝ์—์„œ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ•์˜ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋  ์ˆ˜ ์žˆ๋Š” ์˜ˆ์‹œ๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ๋‹ค. ๊ต๋Ÿ‰ ์™ธ๋ถ€์—์„œ๋Š” North, East ๋ฐฉํ–ฅ์œผ๋กœ ์ ๊ตฐ ์ธก์ •์น˜๊ฐ€ ์กด์žฌํ•˜์ง€๋งŒ, ๊ต๋Ÿ‰ ํ•˜๋ถ€๋กœ ์ง„์ž… ์‹œ East ๋ฐฉํ–ฅ์˜ ์ ๊ตฐ ์ธก์ •์น˜๊ฐ€ ์—†๋‹ค. ์ด๋กœ ์ธํ•ด East ๋ฐฉํ–ฅ์œผ๋กœ ์œ„์น˜ ๊ณต๋ถ„์‚ฐ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ๊ฒฐ๊ตญ ํ•ญ๋ฒ•์ด ๋ฐœ์‚ฐํ•˜๊ฒŒ ๋œ๋‹ค. ๋ฐ˜๋ฉด ์›๊ธฐ๋‘ฅ์€ ์ ๊ตฐ ์ธก์ •์น˜์˜ ์ „ ๋ฐฉํ–ฅ ๋ถ„ํฌ๋กœ ์ธํ•ด ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค.

๊ทธ๋ฆผ. 5. ํŠน์ง•์  ์ถ”์ถœ

Fig. 5. Extract feature points

../../Resources/kiee/KIEE.2020.69.12.1970/fig5.png

์‚ฌ๊ฐ๊ธฐ๋‘ฅ ํ˜•ํƒœ์˜ ๊ต๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ ์ ๊ตฐ ๋ฐ€์ง‘๋„๋กœ๋ถ€ํ„ฐ ํŠน์ง•์ (=End Point)์„ ์ถ”์ถœํ•˜์—ฌ ๊ธฐ์กด ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ทจ์•ฝ์ ์„ ํ•ด๊ฒฐํ•˜์˜€๋‹ค. ์ธก์ •๊ฑฐ๋ฆฌ๊ฐ€ ๋ฉ€์–ด์ง€๋ฉด ์ ๊ตฐ ๋ถ„ํฌ๋ฐ€๋„๊ฐ€ ๋‚ฎ์•„์ง€๋ฉฐ, ๋งต๊ณผ ๋“œ๋ก ์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์ ๊ตฐ ๋ถ„ํฌ๋ฐ€๋„๊ฐ€ ๋†’์•„์ง„๋‹ค. ์ฆ‰, ์ ๊ตฐ ๋ฐ€๋„๊ฐ€ ๋†’์„์ˆ˜๋ก ์ธก์ •์น˜ ์‹ ๋ขฐ์„ฑ์ด ๋†’๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ธก์ •์น˜ ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ฅธ ์ ๊ตฐ ๋ถ„ํฌ๋ฅผ ๊ทธ๋ฆผ 5์— ๋„์‹œํ•˜์˜€๋‹ค. ๋ฐ€๋„๊ฐ€ ๋†’์€ ๊ตฌ๊ฐ„์˜ ๋์ ์„ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์กด ์ ๊ตฐ ์ธก์ •์น˜ ๋ชจ๋ธ์— ๋ˆ„์ ํ•˜๊ณ  ํ™•์žฅ๋œ ๋ชจ๋ธ์„ ์‹(7)์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด๋•Œ, ํ•ญ๋ฒ• ์„ฑ๋Šฅ์€ ์„ผ์„œ์˜ ์ ๊ตฐ ํ•ด์ƒ๋„(Resolution)์— ์˜ํ–ฅ์„ ๋ฐ›๊ฒŒ ๋œ๋‹ค.

(7)
$z_{k}-h\left(\hat{x}_{k}^{-}\right)=\left[\begin{array}{c}r_{1}-\hat{r}_{1} \\ r_{2}-\hat{r}_{2} \\ \vdots \\ r_{i}-\hat{r}_{i} \\ \Delta \text { East }\end{array}\right], H \equiv\left[\begin{array}{c}H_{P C, 1} \\ H_{P C, 2} \\ \vdots \\ H_{P C, i} \\ 0100_{1 \times 12}\end{array}\right]$

4. ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ต๋Ÿ‰ํ™˜๊ฒฝ ํ•ญ๋ฒ•์„ฑ๋Šฅ ๋ถ„์„

4.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ

์ด์ „ ์—ฐ๊ตฌ(13)์—์„œ ๊ตฌ์„ฑํ•œ Matlab ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ต๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ์˜ ๋งต ์—ฐ๋™ ๋ณตํ•ฉํ•ญ๋ฒ• ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋Š” โ€˜์œ ๋„-์ œ์–ด-๋™์—ญํ•™-์„ผ์„œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ-ํ•ญ๋ฒ•โ€™์— ์ด๋ฅด๋Š” ์ „ ๊ณผ์ •์ด ํฌํ•จํ•œ๋‹ค.

์„ผ์„œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ๋ถ€์˜ ๊ฒฝ์šฐ IMU, GNSS ์™ธ 270ยฐ FOV(Field Of View), 2.5ยฐ ํ•ด์ƒ๋„๋ฅผ ๊ฐ–๋Š” 2D ๋ผ์ด๋‹ค์™€ ๊ณ ๋„ ์ธก์ •์„ ์œ„ํ•œ 1์ถ• ๊ฑฐ๋ฆฌ์„ผ์„œ(LRF, Laser Range Finder)๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. 2D ๋ผ์ด๋‹ค์™€ 1์ถ• ๊ฑฐ๋ฆฌ์„ผ์„œ์—์„œ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋Š” ๋ชจ๋‘ ์ ๊ตฐ ํ˜•ํƒœ๋กœ ์ ๊ตฐ ๊ธฐ๋ฐ˜ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ•์˜ ์ธก์ •์น˜ ์—…๋ฐ์ดํŠธ์— ์‚ฌ์šฉ๋œ๋‹ค. ์ธก์ • ๊ฐ€๋Šฅํ•œ ์ตœ๋Œ€ ์ ๊ตฐ ์ˆ˜๋Š” ์ˆ˜ํ‰ 109๊ฐœ, ์ˆ˜์ง 1๊ฐœ์ด๋‹ค. ์ด๋•Œ, ์„ผ์„œ๊ฐ’์˜ ํ˜„์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์‹ค์ œ ์„ผ์„œ๋กœ๋ถ€ํ„ฐ ์ธก์ •ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์žก์Œ์„ ์‚ฝ์ž…ํ•˜์˜€๋‹ค. Hexa-Rotor ํ˜•ํƒœ์˜ ๋“œ๋ก  ๋™์—ญํ•™ ๋ชจ๋ธ๊ณผ ๊ฐ„๋‹จํ•œ PID ์ œ์–ด๊ธฐ๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค.

3D ๋งต์˜ ๊ฒฝ์šฐ ๊ต๋Ÿ‰ ์ƒ๋ถ€๊ฐ€ ์ œ๊ฑฐ๋œ ๊ต๋Ÿ‰ ํ•˜๋ถ€ ๊ธฐ๋‘ฅ๋งŒ ์กด์žฌํ•˜๋Š” ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๊ณ , ์‹ค์ œ ์ƒํŒ ํญ๋ณด๋‹ค ๋„“์€ 20m(East 0m ๊ธฐ์ค€ ยฑ10m) ์‚ฌ์ด๋ฅผ ์œ„์„ฑํ•ญ๋ฒ• ์Œ์˜์ง€์—ญ์œผ๋กœ ๊ฐ€์ •ํ•˜์˜€๋‹ค. ํ•ญ๋ฒ•๋ถ€์˜ ๊ฒฝ์šฐ ์Œ์˜์ง€์—ญ์— ๋Œ€ํ•œ ํŒ๋‹จ์„ ๋ณ„๋„๋กœ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ , ๋“œ๋ก ์˜ ์œ„์น˜์— ๋”ฐ๋ผ GNSS/INS ๊ฒฐํ•ฉ ํ•ญ๋ฒ•๊ณผ ์ ๊ตฐ ๊ธฐ๋ฐ˜ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ•์ด ์ „ํ™˜๋œ๋‹ค.

4.2 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ

๋จผ์ € ์‚ฌ๊ฐ๊ธฐ๋‘ฅ ๊ต๋Ÿ‰์—์„œ์˜ ํŠน์ง•์  ์ ์šฉ ์œ ๋ฌด์— ๋”ฐ๋ฅธ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ GNSS/INS ๊ฒฐํ•ฉ ํ•ญ๋ฒ•์œผ๋กœ ๋น„ํ–‰ ํ›„ ์Œ์˜์ง€์—ญ ์ง„์ž… ์‹œ ์ ๊ตฐ ๊ธฐ๋ฐ˜ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ•์œผ๋กœ ์ „ํ™˜๋œ๋‹ค. ์ด์–ด์„œ ํ•ญ๋ฒ• ๋ฐœ์‚ฐ ์ •๋„๋ฅผ ๋ณด๊ธฐ ์œ„ํ•ด (0, 0) ์ง€์ ์—์„œ 30์ดˆ๊ฐ„ ํ˜ธ๋ฒ„๋ง ํ›„ ๊ต๋Ÿ‰์„ ํ†ต๊ณผํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ทธ๋ฆผ 6์— ๋„์‹œํ•˜์˜€๋‹ค.

์ ๊ตฐ ํŠน์ง•์  ์ ์šฉ์— ๋”ฐ๋ฅธ ์œ„์น˜ ์˜ค์ฐจ์™€ ๊ณต๋ถ„์‚ฐ์„ ๊ทธ๋ฆผ 7, 8์— ๋„์‹œํ•˜์˜€๋‹ค. ํŒŒ๋ž€์ƒ‰ ๊ตฌ๊ฐ„์€ GNSS/INS ๊ฒฐํ•ฉ ํ•ญ๋ฒ• ๊ตฌ๊ฐ„์ด๋ฉฐ, ๋นจ๊ฐ„์ƒ‰ ๊ตฌ๊ฐ„์€ ์ ๊ตฐ ๊ธฐ๋ฐ˜ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ• ๊ตฌ๊ฐ„์œผ๋กœ, ๋ณธ ๊ตฌ๊ฐ„์— ๋Œ€ํ•œ ์œ„์น˜ ๊ณต๋ถ„์‚ฐ์„ ์˜ค๋ฅธ์ชฝ์— ํ•จ๊ป˜ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

๊ธฐ์กด ์ ๊ตฐ ์ธก์ •์น˜๋งŒ์œผ๋กœ ํ•ญ๋ฒ•์„ ์ˆ˜ํ–‰ํ–ˆ์„ ๋•Œ, ๊ทธ๋ฆผ 8๊ณผ ๊ฐ™์ด ํ˜ธ๋ฒ„๋ง ๊ตฌ๊ฐ„์—์„œ ์ ๊ตฐ ์ธก์ •์น˜๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š๋Š” East ๋ฐฉํ–ฅ์œผ๋กœ ๊ณต๋ถ„์‚ฐ๊ณผ ํ•จ๊ป˜ ์œ„์น˜ ์˜ค์ฐจ๊ฐ€ ์ฆ๊ฐ€ํ•˜์—ฌ ํ•ญ๋ฒ•์ด ๋ฐœ์‚ฐํ•œ๋‹ค. ๋ฐ˜๋ฉด ํŠน์ง•์ ์„ ํ™•์žฅํ•œ ๊ฒฝ์šฐ East ๋ฐฉํ–ฅ์œผ๋กœ ์ธก์ •์น˜๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ทธ๋ฆผ 9์™€ ๊ฐ™์ด East ๋ฐฉํ–ฅ์— ๋Œ€ํ•œ ๊ณต๋ถ„์‚ฐ์ด ์–ด๋Š์ •๋„ ์ œํ•œ๋˜๋ฉด์„œ ์œ„์น˜ ์˜ค์ฐจ๊ฐ€ ์ˆ˜๋ ดํ•˜์˜€๋‹ค.

๊ทธ๋ฆผ. 6. ๋น„ํ–‰ ์‹œ๋‚˜๋ฆฌ์˜ค

Fig. 6. Flight scenario

../../Resources/kiee/KIEE.2020.69.12.1970/fig6.png

๊ทธ๋ฆผ. 7. ํŠน์ง•์ ์„ ์ ์šฉํ•˜์ง€ ์•Š์€ ์œ„์น˜ ์˜ค์ฐจ์™€ ๊ณต๋ถ„์‚ฐ ๊ฒฐ๊ณผ

Fig. 7. Error of position and Covariance (wo feature)

../../Resources/kiee/KIEE.2020.69.12.1970/fig7.png

๊ทธ๋ฆผ. 8. ํŠน์ง•์ ์„ ์ ์šฉํ•œ ์œ„์น˜ ์˜ค์ฐจ์™€ ๊ณต๋ถ„์‚ฐ ๊ฒฐ๊ณผ

Fig. 8. Error of position and Covariance (with feature)

../../Resources/kiee/KIEE.2020.69.12.1970/fig8.png

๊ทธ๋ฆผ. 9. ๊ต๋Ÿ‰ ํ•˜๋ถ€๊ธฐ๋‘ฅ ํ˜•ํƒœ๋ณ„

Fig. 9. Type of bridge column

../../Resources/kiee/KIEE.2020.69.12.1970/fig9.png

๊ทธ๋ฆผ. 10. ํ•ญ๋ฒ• ๊ฒฐ๊ณผ (์œ„์น˜)

Fig. 10. Position estimation according to columnโ€™s shape

../../Resources/kiee/KIEE.2020.69.12.1970/fig10.png

ํ‘œ 2. ์œ„์น˜ ์˜ค์ฐจ

Table 2. RMSE of position

RMSE[m]

์›

ํƒ€์›

์ •์‚ฌ๊ฐํ˜•

์ง์‚ฌ๊ฐํ˜•

GNSS

2D ์œ„์น˜

0.073

0.055

0.064

0.064

์ ๊ตฐ ๊ธฐ๋ฐ˜

2D ์œ„์น˜

0.075

0.067

0.076

0.100

GNSS

3D ์œ„์น˜

0.103

0.095

0.096

0.098

์ ๊ตฐ ๊ธฐ๋ฐ˜

3D ์œ„์น˜

0.099

0.096

0.099

0.120

4.3 ๊ธฐ๋‘ฅ ํ˜•ํƒœ๋ณ„

๋‹ค์Œ์€ ๊ต๋Ÿ‰ ํ•˜๋ถ€ ๊ธฐ๋‘ฅ์˜ ํ˜•ํƒœ๋ณ„๋กœ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์›, ํƒ€์›, ์ •์‚ฌ๊ฐํ˜•, ์ง์‚ฌ๊ฐํ˜•์€ ์‹ค์ œ ๊ต๋Ÿ‰์—์„œ ๋งŽ์ด ๋ณผ ์ˆ˜ ์žˆ๋Š” ๋Œ€ํ‘œ์  ๊ธฐ๋‘ฅ ํ˜•ํƒœ๋กœ ๊ฐ๊ฐ์˜ 3D ๋งต ์ •๋ณด๋ฅผ ๊ทธ๋ฆผ 9์— ๋„์‹œํ•˜์˜€๋‹ค. ์›๊ณผ ํƒ€์›์˜ ๊ฒฝ์šฐ ๊ณก๋ฉด์œผ๋กœ ์ธํ•ด ์‚ฌ๊ฐํ˜•๋ณด๋‹ค ๋” ๋งŽ์€ ๋ฉด๊ณผ ๊ผญ์ง€์ ์„ ๊ฐ€์ง„๋‹ค.

๊ต๋Ÿ‰ ํ•˜๋ถ€๊ธฐ๋‘ฅ ํ˜•ํƒœ๋ณ„ ๋ณตํ•ฉํ•ญ๋ฒ• ๊ฒฐ๊ณผ๋ฅผ ๊ทธ๋ฆผ 10์— ๋„์‹œํ•˜์˜€๋‹ค. ๋…น์ƒ‰์„ ์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ƒ True ๊ถค์ ์ด๋ฉฐ, ํŒŒ๋ž€์„ ์€ GNSS/INS ๊ฒฐํ•ฉ ํ•ญ๋ฒ• ๊ตฌ๊ฐ„, ๋นจ๊ฐ„์„ ์€ ํŠน์ง•์ ์„ ์ ์šฉํ•˜์ง€ ์•Š์€ ์ ๊ตฐ ๊ธฐ๋ฐ˜ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ• ๊ตฌ๊ฐ„(East ยฑ10m)์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.

์‚ฌ๊ฐ๊ธฐ๋‘ฅ์˜ ๊ฒฝ์šฐ ํ˜ธ๋ฒ„๋ง ์—†์ด 5์ดˆ ๋‚ด์™ธ๋กœ ์งง๊ฒŒ ํ†ต๊ณผํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์•ž์„œ ์–ธ๊ธ‰ํ•œ ์ ๊ตฐ ๊ธฐ๋ฐ˜ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ•์ด ๋ฐœ์‚ฐ์—†์ด ์ˆ˜๋ ดํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆผ 10์— ๋Œ€ํ•œ ๊ฐ ๊ตฌ๊ฐ„๋ณ„ ์œ„์น˜ํ•ด์˜ ํ‰๊ท  ์ œ๊ณฑ๊ทผ ์˜ค์ฐจ(RMSE)๋Š” ํ‘œ 2์— ์ •๋ฆฌํ•˜์˜€๋‹ค. ๋™์ผ ํ˜•ํƒœ์˜ ๊ธฐ๋‘ฅ์—์„œ GNSS์™€ ์ ๊ตฐ ๊ธฐ๋ฐ˜ ํ•ญ๋ฒ•์€ 2D 3.6cm, 3D 2.2cm ์ •๋„์˜ ์„ฑ๋Šฅ ์ฐจ์ด๋ฅผ ๋ณด์ด๋ฉฐ, ๊ธฐ๋‘ฅ ํ˜•ํƒœ๋ณ„๋กœ๋Š” GNSS์˜ ๊ฒฝ์šฐ 2D 1.8cm, 3D 0.8cm, ์ ๊ตฐ ๊ธฐ๋ฐ˜ ํ•ญ๋ฒ•์˜ ๊ฒฝ์šฐ 2D 3.3cm, 3D 2.4cm ์ •๋„์˜ ์„ฑ๋Šฅ ์ฐจ์ด๋ฅผ ๋ณด์ธ๋‹ค.

๊ทธ๋ฆผ. 11. ์›๊ธฐ๋‘ฅ ๋‹ค๊ฐํ˜•ํ™”

Fig. 11. Polygonlize about bridge column

../../Resources/kiee/KIEE.2020.69.12.1970/fig11.png

๊ทธ๋ฆผ. 12. ํ•ญ๋ฒ• ๊ฒฐ๊ณผ (์œ„์น˜)

Fig. 12. Position estimation according to columnโ€™s polygon

../../Resources/kiee/KIEE.2020.69.12.1970/fig12.png

ํ‘œ 3. ์œ„์น˜ ์˜ค์ฐจ

Table 3. RMSE of position

RMSE[m]

์›

12๊ฐํ˜•

6๊ฐํ˜•

์ ๊ตฐ ๊ธฐ๋ฐ˜

2D ์œ„์น˜

0.24

0.24

0.24

์ ๊ตฐ ๊ธฐ๋ฐ˜

3D ์œ„์น˜

0.29

0.27

0.29

Update Time

6.06ms

4.26ms

4.26ms

4.4 ์›๊ธฐ๋‘ฅ ๋‹จ์ˆœํ™”

์ ๊ตฐ ๊ธฐ๋ฐ˜ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ•์˜ ๊ฒฝ์šฐ ์ ๊ตฐ ๋ฐ์ดํ„ฐ์™€ ์ฃผ๋ณ€ ์ง€ํ˜•์ง€๋ฌผ๊ณผ์˜ ๊ธฐํ•˜๊ด€๊ณ„ ์—ฐ์‚ฐ์— (๋งต์˜ ๋ฉด ๊ฐœ์ˆ˜)ร—(๊ฐ€์šฉํ•œ ์ ๊ตฐ ์ˆ˜) ๋งŒํผ์˜ ๊ณ„์‚ฐ์ด ํ•„์š”ํ•˜๋‹ค. ์—ฐ์‚ฐ๋Ÿ‰ ๊ฐ์†Œ๋ฅผ ์œ„ํ•ด ์›๊ธฐ๋‘ฅ์˜ ๋ฉด ๊ฐœ์ˆ˜๋ฅผ ์ค„์—ฌ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆผ 11์€ ์›๊ธฐ๋‘ฅ์„ 12๊ฐํ˜•๊ณผ 6๊ฐํ˜• ๊ธฐ๋‘ฅ์œผ๋กœ ๋ณ€ํ™˜ํ–ˆ์„ ๋•Œ ๋ฉด์ˆ˜์™€ ๊ผญ์ง€์  ์ˆ˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ด๋ฅผ ๋ฐ˜์˜ํ•œ ํ•ญ๋ฒ• ๊ฒฐ๊ณผ๋ฅผ ๊ทธ๋ฆผ 12์— ๋„์‹œํ•˜๊ณ , ์ ๊ตฐ ๊ธฐ๋ฐ˜ ๋งต ์—ฐ๋™ ํ•ญ๋ฒ• ๊ตฌ๊ฐ„์— ๋Œ€ํ•œ RMSE ๊ฒฐ๊ณผ์™€ ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ(NVIDIA Jetson TX2)์—์„œ์˜ ์ ๊ตฐ ์ธก์ •์น˜๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๋Š”๋ฐ ์†Œ์š”๋˜๋Š” ์‹œ๊ฐ„์„ ํ‘œ 3์— ์ •๋ฆฌํ•˜์˜€๋‹ค. ์›๊ธฐ๋‘ฅ์„ ๋‹ค๊ฐ๊ธฐ๋‘ฅ์œผ๋กœ ๋‹จ์ˆœํ™” ์‹œ์ผฐ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์œ„์น˜ ์˜ค์ฐจ์˜ ํฐ ๋ณ€ํ™” ์—†์ด ์—ฐ์‚ฐ์‹œ๊ฐ„์€ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์€ ์ผ์ • ์ˆ˜์ค€ ์œ ์ง€ํ•˜๋ฉด์„œ ์‹ค์‹œ๊ฐ„์„ฑ ํ™•๋ณด๋ฅผ ์œ„ํ•ด 3D ๋งต์˜ ํ‘œํ˜„ ์ •ํ™•๋„(ํ•ด์ƒ๋„) ๊ฐ์†Œ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

5. ๊ฒฐ ๋ก 

์œ„์„ฑํ•ญ๋ฒ• ๊ฐ€์šฉ ๋ฐ ๋น„๊ฐ€์šฉ ์ง€์—ญ์ด ํ˜ผ์žฌํ•˜๋Š” ๊ต๋Ÿ‰ ํ™˜๊ฒฝ์—์„œ ๋“œ๋ก  ์ž์œจ๋น„ํ–‰์„ ์œ„ํ•œ ๋ณตํ•ฉํ•ญ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ํŠนํžˆ, ๋‹ค์–‘ํ•œ ๊ต๋Ÿ‰ ๊ธฐ๋‘ฅ ํ˜•ํƒœ์— ๋”ฐ๋ฅธ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๊ณ , ์‹ค์‹œ๊ฐ„์„ฑ ํ™•๋ณด ๋ฐฉ์•ˆ ์ค‘ ํ•˜๋‚˜์ธ 3D ๋งต์˜ ๋‹จ์ˆœํ™”๋ฅผ ํ†ตํ•ด ์—ฐ์‚ฐ๋Ÿ‰ ๊ฐ์†Œ๋ฅผ ๋ณด์˜€๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๊ต๋Ÿ‰ํ™˜๊ฒฝ์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์ธก์ •์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ•ญ๋ฒ• ๊ฐ„์— ๋Š๊น€์—†์ด ์—ฐ์†์ ์œผ๋กœ ํ•ญ๋ฒ• ์ˆ˜ํ–‰์ด ๊ฐ€๋Šฅํ•จ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๊ต๋Ÿ‰๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋งต ์ •๋ณด๊ฐ€ ์กด์žฌํ•˜๋Š” ๋‹ค๋ฅธ ์‹œ์„ค๋ฌผ ์ฃผ๋ณ€์—์„œ๋„ ํ™œ์šฉ ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•œ๋‹ค.

ํ–ฅํ›„, ๊ต๋Ÿ‰๊ณผ ๊ฐ™์€ ์œ„์„ฑํ•ญ๋ฒ• ์Œ์˜์ง€์—ญ ์‹œ์„ค๋ฌผ ์ ๊ฒ€ ๋“œ๋ก ์˜ ๊ฒฝ์šฐ ๊ต๋Ÿ‰ํ•˜์—์„œ ์ผ์ •ํ•œ ๊ณ ๋„๋ฅผ ์œ ์ง€ํ•˜๋ฉฐ ์‹œ์„ค๋ฌผ์˜ ํ‘œ๋ฉด์„ ์ดฌ์˜ํ•˜๋Š” ๊ธฐ๋Šฅ์ด ํ•„์š”ํ•˜๋‹ค. ์‹ค์ œ ๋น„ํ–‰ ํ™˜๊ฒฝ์—์„œ๋Š” ์ˆ˜ํ’€, ์ธ๊ณต๊ตฌ์กฐ๋ฌผ ๋“ฑ์œผ๋กœ ์ธํ•ด ๋งต ์ •๋ณด์™€ ํ•˜๋ฐฉ ์„ผ์„œ๋กœ๋ถ€ํ„ฐ ์ธก์ •๋œ ์ง€๋ฉด ํ”„๋กœํŒŒ์ผ์— ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ๊ธฐ์••๊ณ ๋„๊ณ„ ๋“ฑ์„ ํ™œ์šฉํ•œ ๊ณ ๋„์ •๋ณด ๋ณด์ •์ด ํ•„์š”ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•œํŽธ, ์ ๊ตฐ ๋ฐ์ดํ„ฐ๋ฅผ ์ธก์ •ํ•˜๋Š” ์„ผ์„œ์˜ ๊ฒฝ์šฐ ๋ ˆ์ด์ € ์†Œ์Šค๊ฐ€ ๋น› ๋ฐ˜์‚ฌ๋‚˜ ๋ฐ์ดํ„ฐ ์†์‹ค ๋“ฑ์˜ ์˜ํ–ฅ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ธก์ •์น˜ ๋…ธ์ด์ฆˆ ์ „์ฒ˜๋ฆฌ ๋ฐฉ์•ˆ๋„ ๊ณ ๋ ค๋˜์–ด์•ผ ํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.

Acknowledgements

๋ณธ ์—ฐ๊ตฌ๋Š” ์—ฐ๊ตฌ์žฌ๋‹จ ์ง€์›(NRF-2019R1A2B5B010 69412), ์ •๋ณดํ†ต์‹ ๊ธฐํšํ‰๊ฐ€์›์˜ ๋Œ€ํ•™ ICT ์—ฐ๊ตฌ์„ผํ„ฐ์ง€์›์‚ฌ์—…(IITP-2020-2018-0-01423) ๋ฐ ๊ตญํ† ๊ตํ†ต๊ณผํ•™๊ธฐ์ˆ ์ง„ํฅ์› ๊ณต๊ณตํ˜์‹ ์กฐ๋‹ฌ์—ฐ๊ณ„ ๋ฌด์ธ์ด๋™์ฒด ๋ฐ SWํ”Œ๋žซํผ ๊ฐœ๋ฐœ์‚ฌ์—…์˜ ์—ฐ๊ตฌ๋น„์ง€์›(๋ฌด์ธ์ด๋™์ฒด๊ธฐ๋ฐ˜ ์ ‘๊ทผ์ทจ์•ฝ ์ฒ ๋„์‹œ์„ค๋ฌผ ์ž๋™ํ™”์ ๊ฒ€์‹œ์Šคํ…œ ๊ฐœ๋ฐœ)์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

References

1 
N. M. Shajahan, T. Kuruvila, A. S. Kumar, D. Davis, 2019, Automated inspection of monopole tower using drones and computer vision, 2019 2nd International Conf. on Intelligent Autonomous Systems, pp. 187-192DOI
2 
A. J. Moore, M. Schubert, N. Rymer, S. Balachandran, M. Consiglio, C. Munoz, J. Smith, D. Lewis, P. Schneide, 2018, Inspection of electrical transmission structures with UAV path conformance and lidar-based geofences, 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conf., pp. 1-5DOI
3 
N. Bolourian, A. Hammad, 2020, LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection, Automation in Construction, Vol. 117DOI
4 
Y. Zou, V. Gonzalez, J. Lim, R. Amor, B. Guo, M. B. Jelodar, June 2019, Systematic framework for postearthquake bridge inspection through uav and 3d bim reconstruction, CIB World Building Congress, pp. 17-21Google Search
5 
S. T. Nguyen, A. Q. Pham, C. Motley, H. M. La, May 2020, A Practical Climbing Robot for Steel Bridge Inspection, IEEE International Conf. on Robotics and Automation, Vol. 31, pp. 9322-9328DOI
6 
B. Chan, H. Guan, J. Jo, M. Blumenstein, 2015, Towards UAV-based bridge inspection systems: A review and an application perspective, Structural Monitoring and Main- tenance, Vol. 2, No. 3, pp. 283-300DOI
7 
P. Darby, W. Hollerman, J. Miller, 2019, Exploring the Potential Utility of Unmanned Aerial Vehicles for Practical Bridge Inspection in Louisiana, MATEC Web of Conf., Vol. 271DOI
8 
S. Dorafshan, R. J. Thomas, C. Coopmans, M. Maguire, 2019, A Practitionerโ€™s Guide to Small Unmanned Aerial Systems for Bridge Inspection, Infrastructures, Vol. 4, No. 4DOI
9 
T.Oh, S. Jung, S. Song, H. Myung, 2017, Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle), World Congress on Advances in Structural Engineering and MechanicsGoogle Search
10 
P. Shanthakumar, K. Yu, M. Singh, J. Orevillo, E. Bianchi, M. Hebdon, P. Tokekar, November 2018, View planning and navigation algorithms for autonomous bridge inspection with UAVs, International Symposium on Experimental Robotics, pp. 201-210DOI
11 
G. Park, B. Lee, D. G. Kim, Y. J. Lee, S. Sung, 2020, Design and Analysis of Map Interacted Integrated Navigation System under Urban Environment with Con- strained Satellite Signal, Journal of Institute of Control, Robotics and Systems, Vol. 26, No. 5, pp. 392-397Google Search
12 
G. Park, B. Lee, D. G. Kim, Y. J. Lee, S. Sung, 2020, Design and Performance Validation of Integrated Navi- gation System Based on Geometric Range Measurements and GIS Map for Urban Aerial Navigation, International Journal of Control, Automation and Systems, Vol. 18, No. 10, pp. 2509-2521DOI
13 
B. Lee, G. Park, J. H. Bae, Y. J. Lee, S. Sung, 2017, The Simulator Implementation for verifying the Navigation System with Non-Vision Multi Sensors, The Korean Society for Aeronautical & Space Sciences Conf., pp. 218-219Google Search
14 
A. Angrisano, 2010, GNSS/INS integration methods, Dottorato di ricerca (PhD) in Scienze Geodetiche e Topografiche Thesis, Universitaโ€™degli Studi di Napoli PARTHENOPEGoogle Search

์ €์ž์†Œ๊ฐœ

Gwangsoo Park
../../Resources/kiee/KIEE.2020.69.12.1970/au1.png

2014๋…„ ๊ฑด๊ตญ๋Œ€ํ•™๊ต ํ•ญ๊ณต์šฐ์ฃผ์ •๋ณด์‹œ์Šคํ…œ๊ณตํ•™๊ณผ ํ•™์‚ฌ ์กธ์—….

2016๋…„~ํ˜„์žฌ ๋™ ๋Œ€ํ•™์› ์„๋ฐ•์‚ฌ ํ†ตํ•ฉ๊ณผ์ • ์žฌํ•™ ์ค‘.

๊ด€์‹ฌ๋ถ„์•ผ๋Š” ์„ผ์„œ ์œตํ•ฉ, ๋ฌด์ธ์ด๋™์ฒด ํ•ญ๋ฒ•.

Young Jae Lee
../../Resources/kiee/KIEE.2020.69.12.1970/au2.png

1982๋…„ ์„œ์šธ๋Œ€ํ•™๊ต ํ•ญ๊ณต๊ณตํ•™๊ณผ ํ•™์‚ฌ ์กธ์—….

1985๋…„ ๋™ ๋Œ€ํ•™์› ์„์‚ฌ ์กธ์—….

1990๋…„ ๋ฏธ๊ตญ The Univ. of Texas at Austin ํ•ญ๊ณต์šฐ์ฃผ๊ณตํ•™ ๋ฐ•์‚ฌ.

1996๋…„~ํ˜„์žฌ ๊ฑด๊ตญ๋Œ€ํ•™๊ต ํ•ญ๊ณต์šฐ์ฃผ์ •๋ณด์‹œ์Šคํ…œ๊ณตํ•™๊ณผ ๊ต์ˆ˜.

๊ด€์‹ฌ๋ถ„์•ผ๋Š” GPS๋ฅผ ์ด์šฉํ•œ ์ •๋ฐ€ ์œ„์น˜ ๊ฒฐ์ •, ํ•œ๊ตญํ˜• ์œ„์„ฑํ•ญ๋ฒ•์‹œ์Šคํ…œ, ์œ„์„ฑํ•ญ๋ฒ•๋ณด๊ฐ•์‹œ์Šคํ…œ, ๊ธฐํƒ€ GPS ์‘์šฉ.

Sangkyung Sung
../../Resources/kiee/KIEE.2020.69.12.1970/au3.png

1996๋…„ ์„œ์šธ๋Œ€ํ•™๊ต ์ „๊ธฐ๊ณตํ•™๋ถ€ ์กธ์—….

2003๋…„ ๋™ ๋Œ€ํ•™์› ์ „๊ธฐ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€ ๋ฐ•์‚ฌ.

2007๋…„ 3์›”~ํ˜„์žฌ ๊ฑด๊ตญ๋Œ€ํ•™๊ต ํ•ญ๊ณต์šฐ์ฃผ์ •๋ณด์‹œ์Šคํ…œ๊ณตํ•™๊ณผ ๊ต์ˆ˜.

๊ด€์‹ฌ๋ถ„์•ผ๋Š” ๋ณตํ•ฉํ•ญ๋ฒ•์‹œ์Šคํ…œ, ๋ฌด์ธ์ด๋™์ฒด ํ•ญ๋ฒ• ๋ฐ ์ œ์–ด์‹œ์Šคํ…œ, ๋น„์„ ํ˜• ํ•„ํ„ฐ ๋ฐ ์„ผ์„œ ์œตํ•ฉ, ๊ด€์„ฑํ•ญ๋ฒ• ์‘์šฉ.