| 
                                          
                                       
                                        			Input : $P$ // Propulsion Power 
                                       	
                                       		$\quad \quad\quad E L$ // Electric Load 
                                       		
                                       	$\quad \quad$y // ME RPM 
                                       			
                                       Output : $(i, j)$ // Index for Maximum Consumption Gain 
                                       
                                       			$\quad \quad\quad C P^{O p t i}$ // Optimal Charging Power 
                                       	
                                       		$\quad \quad \quad D P^{O v t i} \quad / /$ Optimal Discharging Power 
                                       		
                                       	$\quad \quad \quad$Consumptiongain $[i][j] \quad / /$ Energy Consumption Gain 
                                       			
                                       Setting : $Batt_{Cap}$ / / Battery Capacity 
                                       
                                       			$\quad \quad  \quad$ unit $_C$ // Charging Power Setting Unit 
                                       	
                                       		$\quad \quad  \quad$ unit $_D / /$ Discharging Power Setting Unit 
                                       		
                                       	$\quad \quad  \quad$ $f(x, y) \quad / / \mathrm{ME}$ Fuel Consumption Characteristic 
                                       			
                                       $\quad \quad  \quad$ $\eta_{E L, y} \quad / /$ Efficiency of Shaft Generator/Motor 
                                       
                                       			Consumptiongain $[a][b]=\{\} \quad / /$ Fuel Consumption Gain(2D) 
                                       	
                                       		$S=E L / \eta_{E L, y} / / \mathrm{ME}$ additional Output for SGM at $E J$ 
                                       		
                                       	$C_{m e}=f(x, y) \times x \quad / /$ ME Fuel Consumption 
                                       			
                                       $n_C=\operatorname{round}\left(\frac{\text { Batt }_{C a p}}{\text { unit }_C}\right)$
                                          // Number of Charging
                                        
                                       
                                       			$n_D=\operatorname{round}\left(\frac{B_{a t t_{C a p}}}{\text { unit }_D}\right)$
                                          // Number of Discharging
                                        
                                       	
                                       		for $\mathrm{i}=0$ to $n_C+1$ do 
                                       		
                                       	$\enspace \enspace C=i \times$ unit $_C \quad / /$ Calculated Charging Power 
                                       			
                                       $\enspace \enspace S^{\prime}=(E L+C) / \eta_{E L+C v}$ 
                                       
                                       			$\enspace \enspace  \enspace  \enspace  \enspace  \enspace$ // ME additional Output
                                          for SGM at $E J$ with Charging
                                        
                                       	
                                       		$\enspace \enspace C_{m e}^C=f(x+C, y) \times(x+C)$ 
                                       		
                                       	$\enspace \enspace  \enspace  \enspace  \enspace  \enspace$ // ME Fuel Consumption
                                          during Charging
                                        
                                       			
                                       $\enspace \enspace  C_{\text {time }}^C=\text { Batt }_{\text {Cap }} / C^{\prime}
                                          \text { // Charging Time }$
                                        
                                       
                                       			for $\mathrm{j}=0$ to $n_D+1$ do 
                                       	
                                       		$\enspace \enspace D=i \times \text { unit }_D \quad / / \text { Calculated Discharging
                                          Power }$
                                        
                                       		
                                       	$\enspace \enspace  S^{\prime}=(E L-D) / \eta_{E L-D y}$ 
                                       			
                                       $\enspace \enspace  \enspace  \enspace  \enspace  \enspace$ // ME additional Output
                                          for SGM at $E z$ with Discharging
                                        
                                       
                                       			$\enspace \enspace$ C_{m e}^D=f(x-D, y) \times(x-D) 
                                       	
                                       		$\enspace \enspace  \enspace  \enspace  \enspace  \enspace$ // ME Fuel Consumption
                                          during Discharging
                                        
                                       		
                                       	$\enspace \enspace C_{\text {time }}^D=B_{\text {Bat }} t_{C a p} / D^{\prime \prime}
                                          \quad / / \text { Discharging Time }$
                                        
                                       			
                                       $(i, j)=\max _{i, j}$ consumption gain 
                                       
                                       			$C P^{\text {Ovti }}=i \times$ unit $_C$ 
                                       	
                                       		$D P^{O p t i}=j \times$ unit $_D$ 
                                       		
                                       	Consumptiongain $[i][j]$ 
                                       			
                                       $$=\left\{\frac{C_{t i m e}^D\left(C_{m e}-C_{m e}^D\right)-C_{\text {time }}^C\left(C_{m
                                          e}^C-C_{m e}\right)}{C_{\text {time }}^C+C_{\text {time }}^D}\right\}$$
                                        
                                       						
                                     |