• ๋Œ€ํ•œ์ „๊ธฐํ•™ํšŒ
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ๋‹จ์ฒด์ด์—ฐํ•ฉํšŒ
  • ํ•œ๊ตญํ•™์ˆ ์ง€์ธ์šฉ์ƒ‰์ธ
  • Scopus
  • crossref
  • orcid

  1. (National Korea Maritime & Ocean University, Korea)
  2. (Agency for Defense Development, Korea)
  3. (Kunsan National University, Korea)



Fringe Field, Impedance Boundary Condition (IBC), Incremental Theory of Diffraction (ITD), Physical Optics (PO), Surface Impedance

1. ์„œ ๋ก 

๋ ˆ์ด๋‹ค ํƒ€๊นƒ์— ๋Œ€ํ•œ ๋ ˆ์ด๋‹ค ๋ฐ˜์‚ฌ ๋‹จ๋ฉด์  (RCS; Radar Cross-Section) ์˜ˆ์ธก์—๋Š” ๋‹ค์–‘ํ•œ ์ „์žํŒŒ ํ•ด์„๊ธฐ๋ฒ•๋“ค์ด ์ ์šฉ๋œ๋‹ค. ๋ ˆ์ด๋‹ค ํƒ€๊นƒ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ ˆ์ด๋‹ค ํŒŒ์žฅ์— ๋น„ํ•ด ํ‘œ์ ์ด ํฐ ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด๊ธฐ ๋•Œ๋ฌธ์— ์ฃผ๋กœ ๊ณ ์ฃผํŒŒ ํ•ด์„ ๊ธฐ๋ฒ•์ด ์‚ฌ์šฉ๋˜๊ณ , ํƒ€๊นƒ์˜ ๊ณต์ง„ํŠน์„ฑ์ด๋‚˜ ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฌผ์— ๋Œ€ํ•œ ์˜ํ–ฅ์„ ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•œ ์šฉ๋„๋กœ ์ €์ฃผํŒŒ ํ•ด์„ ๊ธฐ๋ฒ•๋“ค์ด ์‚ฌ์šฉ๋œ๋‹ค.

๊ณ ์ฃผํŒŒ ํ•ด์„๊ธฐ๋ฒ•์€ ์ด๋ฏธ ์ž˜ ์•Œ๋ ค์ง„ ๋ฐ”์™€ ๊ฐ™์ด ๋ฐ˜์‚ฌํŒŒ ๊ณ„์‚ฐ์„ ์œ„ํ•˜์—ฌ PO (Physical Optics) ๋˜๋Š” GO (Geometrical Optics)๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ํšŒ์ ˆํŒŒ ํ•ด์„๊ธฐ๋ฒ•์ธ PTD (Physical Theory of Diffraction)์™€ GTD (Geometrical Theory of Diffraction) ๊ธฐ๋ฒ•์„ ์ถ”๊ฐ€ํ•˜์—ฌ ํšŒ์ ˆํŒŒ๊นŒ์ง€ ๊ณ ๋ คํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด๋‹ค[1].

๋ฌผ๋ฆฌ๊ด‘ํ•™ ์ด๋ก  ๊ธฐ๋ฐ˜์˜ PO์™€ PTD๋Š” ์‚ฐ๋ž€์ฒด๊ฐ€ ์™„์ „๋„์ฒด(PEC; Perfectly Electrical Conductor)์ธ ๊ฒฝ์šฐ ๋ฐ˜์‚ฌํŒŒ์™€ ํšŒ์ ˆํŒŒ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ฐ๋ž€์ฒด๊ฐ€ ์™„์ „๋„์ฒด๊ฐ€ ์•„๋‹ˆ๊ณ  ์œ ์ „์ฒด๋ฅผ ํฌํ•จํ•˜๊ฑฐ๋‚˜ ํก์ˆ˜์ฒด๊ฐ€ ์ฝ”ํŒ…๋œ ๋„์ฒด์˜ ๊ฒฝ์šฐ์—๋Š” ์•ˆ์ •์ ์ธ PTD ๋ฐฉ๋ฒ•์ด ์•Œ๋ ค์ ธ ์žˆ์ง€ ์•Š๋‹ค. ๊ด‘์„  (ray) ๊ธฐ๋ฐ˜์˜ GO๋Š” ์ด๋ก ์ ์œผ๋กœ๋Š” ์œ ์ „์ฒด์—๋„ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, GTD ์—ญ์‹œ heuristic ๊ณต์‹์„ ์ด์šฉํ•˜์—ฌ ํ‰๋ฉด ์œ ์ „์ฒด ์‚ฐ๋ž€์ฒด์— ์ ์šฉ๋˜๋Š” ์‚ฌ๋ก€๋„ ์žˆ์œผ๋‚˜ ์ •ํ™•ํ•œ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐฉ์‹์ด ์•„๋‹Œ ๊ฒฝํ—˜์ ์ธ ์™ธ์‚ฝ (extrapolation)์„ ํ†ตํ•˜์—ฌ ์ ์ ˆํ•œ ํšŒ์ ˆ ๊ณ„์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค[2,3].

๋ ˆ์ด๋‹ค ํƒ€๊นƒ์€ ๋ ˆ์ด๋” ๋ฐ˜์‚ฌ์‹ ํ˜ธ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ ์ฃผ์š” ์‚ฐ๋ž€ ํฌ์ธํŠธ์— ํก์ˆ˜์ฒด๋ฅผ ๋ฐ”๋ฅด๊ฑฐ๋‚˜, ๋„์ฒด๊ฐ€ ์•„๋‹Œ ์žฌ์งˆ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์œผ๋ฏ€๋กœ, ์™„์ „๋„์ฒด๊ฐ€ ์•„๋‹Œ ํ‘œ์ ์— ์˜ํ•œ ์ •ํ™•ํ•œ ๋ฐ˜์‚ฌํŒŒ์™€ ํšŒ์ ˆํŒŒ ๊ณ„์‚ฐ๋ฐฉ๋ฒ•์˜ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋‹ค[4]. ํŠนํžˆ, ๋„์ฒด์œ„์— RAM (Radar Absorbing Material)์„ ๋ฐœ๋ผ์„œ ์ฝ”ํŒ…๋œ ๊ฒฝ์šฐ ์ž„ํ”ผ๋˜์Šค ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ์ ์šฉํ•˜์—ฌ ๋ฐ˜์‚ฌํŒŒ๋‚˜ ํšŒ์ ˆํŒŒ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. PO๋ฅผ ์ž„ํ”ผ๋˜์Šค ๊ฒฝ๊ณ„์กฐ๊ฑด (IBC; Impedance Boundary Condition)์—์„œ ํƒ€๊นƒ์— ์ ์šฉํ•˜์—ฌ ๋ฐ˜์‚ฌํŒŒ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ๊ณ„์‚ฐํ•œ ๋ฌธํ—Œ๋“ค์ด ๋‹ค์ˆ˜ ๋ณด๊ณ ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์—ฐ๊ตฌ์ž๋“ค๋งˆ๋‹ค ์„œ๋กœ ์ƒ์ดํ•œ ํ‘œ๊ธฐ๋ฒ• (notation)์„ ์‚ฌ์šฉํ•˜์—ฌ ์ •ํ™•ํ•˜์ง€ ์•Š๋Š” ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„์ด๋‹ค[5-8]. ํŠนํžˆ, ํ˜„์žฌ๊นŒ์ง€ ๋ณด๊ณ ๋œ ๋ฌธํ—Œ์—์„œ๋Š” RCS ๊ณ„์‚ฐ์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” $\theta$-, $\phi$-ํŽธํŒŒ๊ฐ€ ์•„๋‹Œ ์ˆ˜์ง(Vertical, V-), ์ˆ˜ํ‰(Horizontal, H-) ํŽธํŒŒ์˜ ํ‘œ๊ธฐ๋ฒ•์ด ์‚ฌ์šฉ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝ์šฐ ์ž…์‚ฌํ‰๋ฉด์„ ๊ธฐ์ค€์œผ๋กœ ํ•˜๋Š” ์ˆ˜์ง (Perpendicular), ์ˆ˜ํ‰ (Parellel) ํŽธํŒŒ์™€ ํ˜ผ๋™๋˜์–ด ์ˆ˜์‹์ด ์ „๊ฐœ๋˜์–ด ํ‘œ๊ธฐ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ํ”ํ•˜๋‹ค.

ํ•œํŽธ, ํšŒ์ ˆํŒŒ์— ๋Œ€ํ•ด์„œ๋Š” ๊ธฐ์กด์˜ PTD์™€ GTD์™€ ๋‹ฌ๋ฆฌ ITD (Incremental Theory of Diffraction) ๊ธฐ๋ฒ•์€ ๊ธˆ์†์๊ธฐ๋ถ€ํ„ฐ ์™„๋ฒฝํ•˜์ง€ ์•Š์€ ์ „๋„์„ฑ ํ‘œ๋ฉด (์œ ์ „์ฒด)์˜ ์๊ธฐ๋กœ ํ™•์žฅ๋˜์–ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ตญ๋ถ€์ ์ธ ๊ตฌ์กฐ๋กœ ๊ทผ์‚ฌํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ •๊ทœํ˜• (canonical) ๋ฌธ์ œํ•ด์˜ ์ ์ ˆํ•œ ์‚ฌ์šฉ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค[9-12]. ๊ตญ๋ถ€ํ™” ํ”„๋กœ์„ธ์Šค๋Š” ๋ถˆ์—ฐ์† ์„  ๋˜๋Š” ๊ทธ๋ฆผ์ž ์„ ์„ ๋”ฐ๋ผ ์ ๋ถ„ํ•˜์—ฌ ํšŒ์ ˆํŒŒ๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ์ฆ๋ถ„๊ณ„์ˆ˜ (incremental coefficient)๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ฆ๋ถ„๊ธฐ๋ฒ•๋“ค์€ ๊ณก๋ฉด์˜ ์๊ธฐ์—๋„ ์ •ํ™•ํ•œ ํšŒ์ ˆํŒŒ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ITD๋ฅผ ์œ ์ „์ฒด ๋ฌผ์งˆ์— ๋Œ€ํ•œ ์ ์šฉ์˜ ์ฃผ์š” ๋ชฉ์ ์€ heuristic ITD ๊ณ„์‚ฐ์‹์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์œผ๋กœ, ๊ธˆ์† ์žฌ์งˆ์— ๋Œ€ํ•œ ์—„๊ฒฉํ•œ ๊ณต์‹์—์„œ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์—ฌ ์œ ์ „์ฒด ์๊ธฐ์— ๋Œ€ํ•ต์„œ๋„ ๊ฐ„๋‹จํ•˜์ง€๋งŒ ์ •ํ™•ํ•œ ํ•ด๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์žˆ๋‹ค.

๊ธฐ์กด์˜ ์—ฐ๊ตฌ [12]์—์„œ๋Š” ํ‘œ๋ฉด์ž„ํ”ผ๋˜์Šค๋ฅผ ๊ฐ€์ง€๋Š” ์๊ธฐ์— ์˜ํ•œ ํšŒ์ ˆํŒŒ๋ฅผ ITD๊ธฐ๋ฒ•์œผ๋กœ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด Hueristic UTD ํšŒ์ ˆ๊ณ„์ˆ˜๋กœ๋ถ€ํ„ฐ ITD ํšŒ์ ˆ๊ธฐ์—ฌ๋ถ„์„ ์œ ๋„ํ•˜๊ณ , ITD ํšŒ์ ˆ๊ธฐ์—ฌ๋ถ„์˜ ํšŒ์ ˆ๊ณ„์ˆ˜์—์„œ ์กฐ์‚ฌ๋˜๋Š” ์๊ธฐ๋ฉด์— ์˜ํ•œ ํšŒ์ ˆ์„ฑ๋ถ„์œผ๋กœ๋ถ€ํ„ฐ PO ๊ธฐ์—ฌ๋ถ„์„ ๊ฐœ๋…์ ์œผ๋กœ ์–ป์—ˆ๋‹ค.

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž„ํ”ผ๋˜์Šค ๊ฒฝ๊ณ„์กฐ๊ฑด์—์„œ์˜ IBC PO ๊ณ„์‚ฐ์‹์„ ฮธ-, ๐œ™-ํŽธํŒŒ ๊ด€์ ์—์„œ ๋‹ค์‹œ ์ •๋ฆฝํ•˜๊ณ , heuristic ITD๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž„ํ”ผ๋˜์Šค ๊ฒฝ๊ณ„์กฐ๊ฑด์—์„œ์˜ ์๊ธฐ์— ์˜ํ•œ Fringe ํ•„๋“œ ๊ณ„์‚ฐ์‹œ PO ๋ชจ์„œ๋ฆฌ ํšŒ์ ˆํŒŒ ์„ฑ๋ถ„์„ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ๋ชจ์„œ๋ฆฌ ํšŒ์ ˆํŒŒ์˜ ์ •์˜๋กœ๋ถ€ํ„ฐ ์ƒˆ๋กญ๊ฒŒ ์ •๋ฆฝํ•˜๊ณ ์ž ํ•œ๋‹ค.

2. ์ž„ํ”ผ๋˜์Šค ๊ฒฝ๊ณ„์กฐ๊ฑด์—์„œ์˜ PO ์‚ฐ๋ž€ํŒŒ ๊ณ„์‚ฐ

๊ทธ๋ฆผ 1๊ณผ ๊ฐ™์€ ๊ณก๋ฉด์˜ ์ž„ํ”ผ๋˜์Šค ํ‘œ๋ฉด์„ ๊ฐ€์ง€๋Š” ์‚ฐ๋ž€์ฒด์— ์˜ํ•œ ์‚ฐ๋ž€ํŒŒ๋Š” ๊ณก๋ฉด์˜ ์‚ฐ๋ž€์ฒด ์ ‘ํ‰๋ฉด์—์„œ ์ฆ๋ถ„ (Incremental) PO ํ•„๋“œ Fpo๋ฅผ ๋ฉด์ ๋ถ„์„ ํ†ตํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ทผ์‚ฌํ™”ํ•˜์—ฌ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

(1)
$\overline {E}(P)\sim\overline {E}_{s}^{po}(P)=\iint_{S}\overline {F}^{po}\left(Q_{s}\right)d S$,

์—ฌ๊ธฐ์„œ $S$๋Š” ์ ‘ํ‰๋ฉด์˜ ํ‘œ๋ฉด, $P$๋Š” ๊ด€์ธก์ , $Q_{s}$๋Š” ํ‘œ๋ฉด $S$ ์œ„์˜ ์ ์„ ์˜๋ฏธํ•œ๋‹ค.

๊ณก๋ฉด ์œ„์˜ ์ ์ธ Qs์—์„œ์˜ ์ฆ๋ถ„ PO ํ•„๋“œ์ธ ${F}^{po}\left(Q_{s}\right)$๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋จผ์ € ์ขŒํ‘œ๊ณ„์— ๋Œ€ํ•œ ์ •์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๊ทธ๋ฆผ 1๊ณผ ๊ฐ™์ด ๊ณก๋ฉด๊ณผ ๋ฌดํ•œ ํ‰๋ฉด์— ์ˆ˜์ง์ธ $z_{0}$์ถ•์„ ๊ฐ€์ง€๋ฉฐ, $Q_{s}$๋ฅผ ์›์ ์œผ๋กœ ํ•˜๋Š” ์ง€์—ญ ์ขŒํ‘œ๊ณ„ $\left(x_{0},\: y_{0},\: z_{0}\right)$๋ฅผ ์ •์˜ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์œ„ ๋ฒกํ„ฐ $(\hat{r},\: \hat{\theta},\: \hat{\phi})$๋ฅผ ๊ฐ€์ง€๋Š” ๊ตฌ ์ขŒํ‘œ๊ณ„ $(r,\: \theta ,\: \phi)$๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค. ์ž…์‚ฌํŒŒ๋Š” ๋‹จ์œ„ ๋ฒกํ„ฐ $(\hat{r}',\: \hat{\theta}',\: \hat{\phi}')$์™€ ์ขŒํ‘œ $(\theta',\: \phi')$๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค.

๊ทธ๋ฆผ 1. ์ฆ๋ถ„ PO ๊ธฐ์—ฌ๋ถ„์„ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•œ ๊ตญ๋ถ€ ์ ‘ํ‰๋ฉด

Fig. 1. Local tangential plane for definition of the incremental PO contribution

../../Resources/kiee/KIEE.2024.73.7.1204/fig1.png

ํ‘œ์ ์ด ์†Œ์Šค๋กœ๋ถ€ํ„ฐ ์ถฉ๋ถ„ํžˆ ๋ฉ€๋ฆฌ ๋–จ์–ด์ ธ ์žˆ๋‹ค๋ฉด, ์ž…์‚ฌํŒŒ๋Š” ํ‰๋ฉดํŒŒ๋กœ ๊ฐ€์ •ํ•  ์ˆ˜ ์žˆ์–ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(2)
$\overline{E}^{i}=\overline{E}_{0}^{i}e^{-j\overline{k_{i}}\bullet\overline{r}}=\left(E_{\theta}^{i}\hat{\theta}^{i}+E_{\phi}^{i}\hat{\phi}^{i}\right)e^{-j\overline{k_{i}}\bullet\overline{r}}$
(3)
$\overline{H}^{i}=\dfrac{1}{\eta}\hat{k}_{i}\times\overline{E}^{i}=\left(E_{\phi}^{i}\hat{\theta}^{i}-E_{\theta}^{i}\hat{\phi}^{i}\right)\dfrac{e^{-j\overline{k_{i}}\bullet\overline{r}}}{\eta}$

์‚ฐ๋ž€์ฒด์˜ ๊ณก๋ฉด๋ฐ˜๊ฒฝ์ด ์ „๊ธฐ์ ์œผ๋กœ ํฌ๊ณ  ์ฝ”ํŒ… ๋‘๊ป˜๊ฐ€ ๊ณก๋ฉด๋ฐ˜๊ฒฝ์— ๋น„ํ•ด ๋งค์šฐ ์ž‘์€ ๊ฒฝ์šฐ, $\eta_{s}$์˜ ์ž„ํ”ผ๋˜์Šค๋ฅผ ๊ฐ€์ง€๋Š” ์ž„ํ”ผ๋˜์Šค ํ‘œ๋ฉด์—์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ž„ํ”ผ๋˜์Šค ๊ฒฝ๊ณ„์กฐ๊ฑด์ด ์ ์šฉ๋œ๋‹ค.

(4)
$\hat{n}\times\overline{E}=\eta_{s}\hat{n}\times\hat{n}\times\overline{H}$

์ž…์‚ฌํŒŒ๊ฐ€ $\eta_{s}$์˜ ํ‘œ๋ฉด ์ž„ํ”ผ๋˜์Šค๋ฅผ ๊ฐ€์ง€๋Š” ์‚ฐ๋ž€์ฒด์˜ ํ‘œ๋ฉด์— ์ž…์‚ฌํ•˜๋Š” ๊ฒฝ์šฐ, ํ‘œ๋ฉด์˜ ์ด ์ž๊ธฐ์žฅ๊ณผ ์ด ์ „๊ธฐ์žฅ์— ์˜ํ•ด ํ‘œ๋ฉด์—์„œ ์ „๊ธฐ์ „๋ฅ˜ ๋ฟ๋งŒ์•„๋‹ˆ๋ผ ์ž๊ธฐ์ „๋ฅ˜๊ฐ€ ๊ฐ๊ฐ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์œ ๋„๋œ๋‹ค.

(5.1)
$\overline{J_{s}}=\hat{n}\times\overline{H^{t}}=\hat{n}\times\left(\overline{H}^{i}+\overline{H}^{s}\right)$
(5.2)
$\overline{J_{m}}=-\hat{n}\times\overline{E^{t}}=-\hat{n}\times\left(\overline{E}^{i}+\overline{E}^{s}\right)$

์ž„ํ”ผ๋˜์Šค ํ‘œ๋ฉด์— ์˜ํ•ด ๋ฐ˜์‚ฌ๋˜๋Š” ์‚ฐ๋ž€ํŒŒ๋Š” ์ž„ํ”ผ๋˜์Šค ํ‘œ๋ฉด์˜ ๋ฐ˜์‚ฌ๊ณ„์ˆ˜๋ฅผ ์ž…์‚ฌํŒŒ์— ๊ณฑํ•˜์—ฌ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ํ‘œ๋ฉด ์ž„ํ”ผ๋˜์Šค $\eta_{s}$์ธ ๊ฒฝ์šฐ ์ˆ˜ํ‰ (parallel polarization)๊ณผ ์ˆ˜์งํŽธํŒŒ (perpendicular polarization)์˜ ๋ฐ˜์‚ฌ๊ณ„์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ทผ์‚ฌํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค.

(6.1)
$\gamma_{\bot}=\dfrac{\eta_{s}\cos\theta_{i}-\eta_{0}\cos\theta_{t}}{\eta_{s}\cos\theta_{i}+\eta_{0}\cos\theta_{t}}\approx\dfrac{Z_{s }\cos\theta_{i}-1}{Z_{s }\cos\theta_{i}+1}\approx Z_{s}\cos\theta_{i}-1$
(6.2)
$\gamma_{DL\in E}=\dfrac{\eta_{s}\cos\theta_{t}-\eta_{0}\cos\theta_{i}}{\eta_{s}\cos\theta_{t}+\eta_{0}\cos\theta_{i}}\approx\dfrac{Z_{s}-\cos\theta_{i}}{Z_{s}+\cos\theta_{i}}\approx Z_{s}-\cos\theta_{i}$

์—ฌ๊ธฐ์„œ Zs๋Š” ์ •๊ทœํ™”๋œ ํ‘œ๋ฉด์ž„ํ”ผ๋˜์Šค๋กœ $Z_{s}=\eta_{s}/\eta_{0}$์ด๋ฉฐ, $\theta_{i}$์™€ $\theta_{t}$๋Š” ๊ฐ๊ฐ ์ž…์‚ฌํŒŒ์™€ ํˆฌ๊ณผํŒŒ์˜ ์ž…์‚ฌ๊ฐ๊ณผ ํˆฌ๊ณผ๊ฐ์ด๋‹ค. ์ž„ํ”ผ๋˜์Šค ํ‘œ๋ฉด์—์„œ ์‹ค์ œ ํˆฌ๊ณผ๋˜๋Š” ํŒŒ์— ๋Œ€ํ•ด ๊ณ ๋ ค์น˜ ์•Š์œผ๋ฏ€๋กœ ํˆฌ๊ณผ๊ฐ์€ 0ยฐ๋กœ ๊ทผ์‚ฌํ™”๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด๋Ÿฌํ•œ ์ˆ˜์‹์€ ์ž…์‚ฌํŒŒ๊ฐ€ ํ‘œ๋ฉด์— ์ˆ˜์ง์œผ๋กœ ์ž…์‚ฌํ• ์ˆ˜๋ก ๋”์šฑ ์ •ํ™•ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ€์งˆ ๊ฒƒ์„ ์˜ˆ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

๊ทธ๋ฆผ 2์™€ ๊ฐ™์ด ํ‘œ๋ฉด์— ์ˆ˜์ง๋ฐฉํ–ฅ์ด z์ถ•์„ ๊ฐ€์ง€๋Š” ๊ตญ๋ถ€ ์ขŒํ‘œ๊ณ„์˜ ๊ฒฝ์šฐ $\phi$-ํŽธํŒŒ๋Š” ํ‘œ๋ฉด์— ํ‰ํ–‰ํ•˜๊ณ  ์ž…์‚ฌํ‰๋ฉด์— ์ˆ˜์ง์ธ ์ˆ˜์งํŽธํŒŒ (perpendicular polarization)์ด๊ณ , ฮธ-ํŽธํŒŒ๋Š” ์ž…์‚ฌํ‰๋ฉด์— ์ˆ˜ํ‰์ธ ์ˆ˜ํ‰ํŽธํŒŒ (parallel polarization) ํŠน์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋”ฐ๋ผ์„œ ์ž…์‚ฌํ‘œ๋ฉด์—์„œ์˜ ์ด ์ „๊ธฐ์žฅ๊ณผ ์ž๊ธฐ์žฅ์€ ์‹ (6)์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค.

(7.1)
$\left .\begin{aligned}\overline{E^{t}}=\overline{E}^{i}+\overline{E}^{s}=\left[E_{\theta}^{i}\hat{\theta}+E_{ฯ•}^{i}\hat{ฯ•}\right]+\left[\gamma_{DL\in }E_{\theta}^{i}\hat{\theta}+\gamma_{\bot}E_{ฯ•}^{i}\hat{ฯ•}\right]\\=\left(1+\gamma_{DL\in E}\right)E_{\theta}^{i}\hat{\theta}+\left(1+\gamma_{\bot}\right)E_{ฯ•}^{i}\hat{ฯ•}\end{aligned}\right .$
(7.2)
\begin{align*}\overline{H^{t}}=\overline{H}^{i}+\overline{H}^{r}=(1-\gamma_{DL\in E})H_{ฯ•}^{i}\hat{ฯ•}+(1-\gamma_{\bot})H_{\theta}^{i}\hat{\theta}\\=-(1-\gamma_{DL\in E})\dfrac{E_{\theta}^{i}}{\eta_{0}}\hat{ฯ•}+(1-\gamma_{\bot})\dfrac{E_{ฯ•}^{i}}{\eta_{0}}\hat{\theta}\end{align*}

๊ทธ๋ฆผ 2. ๊ตญ๋ถ€ ์ขŒํ‘œ๊ณ„์—์„œ์˜ ฮธ-ํŽธํŒŒ์™€ ๐œ™-ํŽธํŒŒ

Fig. 2. ฮธ-and ๐œ™-polarization in local coordinate

../../Resources/kiee/KIEE.2024.73.7.1204/fig2.png

์‹ (7)์„ ์‹ (5)์— ๋Œ€์ž…ํ•จ์œผ๋กœ์จ, ์ž„ํ”ผ๋˜์Šค ํ‘œ๋ฉด์—์„œ์˜ ์ „๊ธฐ์ „๋ฅ˜ $\overline{J}_{m}$๊ณผ ์ „๊ธฐ์ „๋ฅ˜ $\overline{J}_{s}$๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ‘œ๋ฉด์˜ ์ „๊ธฐ์ „๋ฅ˜๊ณผ ์ž๊ธฐ์ „๋ฅ˜์— ์˜ํ•œ ์‚ฐ๋ž€ํŒŒ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

(8)
$\overline{E}^{s}=\dfrac{(-j\omega\mu)}{4\pi r}e^{-jkr}\iint_{s}\left .\left[\overline{J_{s}}+\dfrac{1}{\eta_{0 }}\overline{J}_{m}\times\hat{r}\right .\right]e^{jk\overline{r}'\bullet\hat{r}}ds$

์‚ฐ๋ž€ํŒŒ์˜ $\theta$-ํŽธํŒŒ ์„ฑ๋ถ„๊ณผ $\phi$-ํŽธํŒŒ ์„ฑ๋ถ„์€ ์‚ฐ๋ž€ํŒŒ์— ๊ฐ๊ฐ $\hat{\theta}$์™€ $\hat{\phi}$ ๋ฐฉํ–ฅ๋ฒกํ„ฐ๋ฅผ ๋‚ด์ ์„ ํ†ตํ•ด์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

(9.1)
\begin{align*}E_{\theta}^{s}=\dfrac{e^{-jkr}}{4\pi r}(-jk)\iint_{S}\left[\eta_{0}\overline{J}_{s}\bullet\hat{\theta}+\overline{J}_{m}\bullet\hat{\phi}\right]e^{jk\overline{r}'\bullet\hat{r}}ds \\=\dfrac{e^{-jkr}}{4\pi r}(-jk)\iint_{S}D_{\theta}e^{jk\overline{r}'\bullet\hat{r}}ds\end{align*}
(9.2)
\begin{align*}E_{\phi}^{s}=\dfrac{e^{-jkr}}{4\pi r}(-jk)\iint_{S}\left[\eta_{0}\overline{J}_{s}\bullet\hat{\phi}+\overline{J}_{m}\bullet\hat{\theta}\right]e^{jk\overline{r}'\bullet\hat{r}}ds \\=\dfrac{e^{-jkr}}{4\pi r}(-jk)\iint_{S}D_{\phi}e^{jk\overline{r}'\bullet\hat{r}}ds\end{align*}

์—ฌ๊ธฐ์„œ $D_{\theta}$์™€ $D_{\phi}$๋Š” ๊ฐ๊ฐ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.

(10.1)
\begin{align*}D_{\theta}=D_{\theta\theta}E_{\theta}^{i }+D_{\theta\phi}E_{\phi}^{i }\\= E_{\theta}^{i }\cos\left(ฯ•_{i}-ฯ•_{p})[-(1+\gamma_{DL\in E})\cos\theta_{i}+(1-\gamma_{DL\in E})\cos\theta_{p}\right]\\+E_{\phi}^{i }\sin\left(ฯ•_{i}-ฯ•_{p})[-(1-\gamma_{\bot})\cos\theta_{i}\cos\theta_{p}+(1+\gamma_{\bot})\right]\end{align*}
(10.2)
\begin{align*}D_{\phi}=D_{\phi\theta}E_{\theta}^{i }+D_{\phi\phi}E_{\phi}^{i }\\=E_{\theta}^{i }\sin\left(ฯ•_{i}-ฯ•_{p})[(1-\gamma_{DL\in E})-(1+\gamma_{DL\in E})\cos\theta_{i}\cos\theta_{p}\right]\\+E_{\phi}^{i }\cos\left(ฯ•_{i}-ฯ•_{p})[(1-\gamma_{\bot})\cos\theta_{i}-(1+\gamma_{\bot})\cos\theta_{p}\right]\end{align*}

๊ฐ $Q_{s}$์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ฆ๋ถ„ PO ํ•„๋“œ์€ ๊ณ ์ฃผํŒŒ์—์„œ ์•„๋ž˜์™€ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

(11)
$\overline {F}^{po}\left(Q_{s}\right)=\left[\begin{aligned}F_{\Theta}^{po}\\F_{\Phi}^{po}\end{aligned}\right]=(-jk)\overline{\overline{D}}^{po}\left(Q_{s}\right)\bullet\overline {E}^{i}\left(Q_{s}\right)\dfrac{e^{-jkr}}{2\pi r}$

์—ฌ๊ธฐ์„œ ${D}^{po}$๋Š” IBC PO ํ•„๋“œ๋ฅผ ์œ„ํ•œ ์‚ฐ๋ž€๊ณ„์ˆ˜ ๋‹ค์Œ๊ณผ ๊ฐ™์€ Diadic ํ˜•์‹์„ ๊ฐ€์ง„๋‹ค.

(12)
$\overline{\overline{D}}^{po}=0.5\times\begin{bmatrix}D_{\theta\theta}&D_{\theta\phi}\\D_{\phi\theta}&D_{\phi\phi}\end{bmatrix}$

PEC์˜ ์‚ฐ๋ž€์ฒด์— PO๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒฝ์šฐ์™€ ์œ ์‚ฌํ•˜๊ฒŒ ์‹ (11)๊ณผ ์‹ (12)์„ ํ†ตํ•ด ์ž…์‚ฌํŒŒ์— ์ง์ ‘ ๋น„์ถฐ์ง„ ํ‘œ๋ฉด์—์„œ์˜ ์ฆ๋ถ„ IBC PO ํ•„๋“œ๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‹ (1)์˜ ์ ๋ถ„์„ ํ†ตํ•ด IBC PO ์‚ฐ๋ž€ํŒŒ์ธ ${E}_{s}^{po}$๋ฅผ ํš๋“ํ•  ์ˆ˜ ์žˆ๋‹ค.

3. ์ž„ํ”ผ๋˜์Šค ๊ฒฝ๊ณ„์กฐ๊ฑด์—์„œ์˜ ITD ํšŒ์ ˆํŒŒ ๊ณ„์‚ฐ

์‚ฐ๋ž€์ฒด์— ์˜ํ•œ ์ด ์‚ฐ๋ž€ํŒŒ (${E}(P)$)๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด PO ํ•„๋“œ ($bold E_{s}^{po}(P)$)์™€ Fringe ํ•„๋“œ (${E}^{fw}(P)$)์˜ ํ•ฉ์œผ๋กœ ํ‘œํ˜„๋œ๋‹ค.

(13)
$\overline {E}(P)\sim\overline {E}_{s}^{po}(P)+\overline {E}^{fw}(P)=\overline {E}_{s}^{po}(P)+\left[\overline {E}_{l}^{d}(P)-\overline {E}_{e}^{po}(P)\right]$

์ด๋Ÿฌํ•œ ์ˆ˜์‹์€ PO ๊ธฐ๋ฐ˜์˜ ์‚ฐ๋ž€ํŒŒ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒฝ์šฐ์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ํ‘œํ˜„ ๋ฐฉ์‹์œผ๋กœ PO ํ•„๋“œ๋ฅผ ๊ตฌํ•˜๊ณ  ์ถ”๊ฐ€์ ์ธ ํ•„๋“œ์„ฑ๋ถ„์ธ fringe ํ•„๋“œ๋ฅผ ๊ตฌํ•จ์œผ๋กœ์จ ์ตœ์ข… ์‚ฐ๋ž€ํŒŒ๋ฅผ ์–ป๋Š” ๋ฐฉ์‹์ด๋‹ค. PO ํ•„๋“œ๋Š” ์™„์ „๋„์ฒด ์‚ฐ๋ž€์ฒด์— ์ ‘ํ•˜๋Š” ๋ฌดํ•œํ‰๋ฉด์œ„์— ๊ท ์ผํ•˜๊ฒŒ ๋ถ„ํฌํ•˜๋Š” ๊ท ์ผ์ „๋ฅ˜(uniform current)์— ์˜ํ•ด ์ƒ์„ฑ๋˜๋Š” ํ•„๋“œ ์„ฑ๋ถ„์œผ๋กœ, ๋ฐ˜์‚ฌํŒŒ๋ฅผ ์˜๋ฏธํ•˜๋Š” GO ํ•„๋“œ์™€ ํšŒ์ ˆํŒŒ ์„ฑ๋ถ„์˜ ์ผ๋ถ€์ธ PO ๋์  ๊ธฐ์—ฌ๋ถ„์„ ํฌํ•จํ•œ๋‹ค. ๋˜ํ•œ, ์‚ฐ๋ž€์ฒด์— ์ ‘ํ•˜๋Š” ๋ฌดํ•œํ‰๋ฉด๊ณผ ์‹ค์ œ ํ‘œ๋ฉด๊ณผ์˜ ํŽธ์ฐจ์— ์˜ํ•œ ํšŒ์ ˆํŒŒ์˜ ๋‚˜๋จธ์ง€ ์„ฑ๋ถ„์„ fringe ํ•„๋“œ๋ผ ๋ถ€๋ฅด๊ณ  ์ด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์†Œ์Šค๋ฅผ ์ผ๋ฐ˜์ ์œผ๋กœ ๋น„๊ท ์ผ์ „๋ฅ˜(non-uniform current)๋กœ ๋ชจ๋ธ๋ง๋œ๋‹ค.

fringe ํ•„๋“œ ์—ญ์‹œ ์๊ธฐ์˜ ๋ชจ์„œ๋ฆฌ๋“ค์„ ๋”ฐ๋ผ์„œ ๊ตญ๋ถ€ํ™”๋œ ์ฆ๋ถ„ fringe ํ•„๋“œ (${F}^{fw}$)๋“ค์˜ ํ•ฉ์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(14)
$\overline {E}^{fw}=\int_{l}\overline {F}^{{fw}}(Q')dl =\int_{l}\overline {F}^{d}(Q')-\overline {F}_{e}^{po}(Q')dl$

์—ฌ๊ธฐ์„œ ${F}^{d}$์™€ ${F}^{po}$๋Š” ์ฆ๋ถ„ ํšŒ์ ˆํŒŒ ๊ธฐ์—ฌ๋ถ„๊ณผ PO ๋์  ๊ธฐ์—ฌ๋ถ„์„ ์˜๋ฏธํ•œ๋‹ค. ITD ๊ธฐ๋ฒ•์€ ์ด๋Ÿฌํ•œ ์ฆ๋ถ„ ํ•„๋“œ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํšŒ์ ˆ๊ณ„์ˆ˜์™€ ์ž…์‚ฌํŒŒ์˜ ๊ณฑ์˜ ํ˜•ํƒœ๋กœ ์ฃผ๋กœ ํ‘œ๊ธฐํ•œ๋‹ค.

(15.1)
\begin{align*}\overline {F}^{d}(Q')=\left[\begin{aligned}F_{\beta}^{d}(Q')\\F_{\phi}^{d}(Q')\end{aligned}\right]\\=\left[\begin{matrix}D^{s}(\phi ,\: \phi')&0\\0&D^{h}(\phi ,\: \phi')\end{matrix}\right]\bullet\left[\begin{aligned}E_{\beta'}^{i}(Q')\\E_{\phi'}^{i}(Q')\end{aligned}\right]\dfrac{e^{-jkr}}{2\pi r}\end{align*}
(15.2)
\begin{align*}\overline {F}_{e}^{po}(Q')=\left[\begin{aligned}F_{e,\: \beta}^{po}(Q')\\F_{e,\: \phi}^{po}(Q')\end{aligned}\right]\\=\left[\begin{matrix}D_{11}^{po}(\phi ,\: \phi')&D_{12}^{po}(\phi ,\: \phi')\\0&D_{22}^{po}(\phi ,\: \phi')\end{matrix}\right]\bullet\left[\begin{aligned}E_{\beta'}^{i}(Q')\\E_{\phi'}^{i}(Q')\end{aligned}\right]\dfrac{e^{-jkr}}{2\pi r}\end{align*}

Heuristic ITD๋Š” ์ž„ํ”ผ๋˜์Šค ํ‘œ๋ฉด (impedance surface)์˜ ์๊ธฐ์—์„œ ์ฆ๋ถ„ํ•„๋“œ๋ฅผ ์–ป๊ธฐ์œ„ํ•œ ์ˆ˜์‹์œผ๋กœ, ์•ž์„  ์—ฐ๊ตฌ[12]์„ ํ†ตํ•ด์„œ ์ฆ๋ถ„ ํšŒ์ ˆํŒŒ ๊ธฐ์—ฌ๋ถ„์˜ ํšŒ์ ˆ๊ณ„์ˆ˜๋ฅผ ์ž„ํ”ผ๋˜์Šค ๊ฒฝ๊ณ„์กฐ๊ฑด์—์„œ์˜ Heuristic UTD ํšŒ์ ˆ๊ณ„์ˆ˜์—์„œ ์ „์ดํ•จ์ˆ˜๋Š” 1๋กœ ์›๊ฑฐ๋ฆฌ ๊ทผ์‚ฌ๋ฅผ ์ ์šฉํ•˜๊ณ , ์ฒซ ๋ฒˆ์งธ ๊ณตํ†ตํ•ญ์€ 1/2n์œผ๋กœ ๋Œ€์น˜ํ•จ์œผ๋กœ์จ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ˆ˜์‹์„ ์ œ์‹œํ•˜์˜€๋‹ค.

$\left . D^{\begin{aligned}s\\ h\end{aligned}}(\phi ,\: \phi')=\dfrac{1}{2n}\left[\dfrac{\psi\left(-\pi +\dfrac{n\pi}{2}-ฯ•\right)}{\psi\left(\dfrac{n\pi}{2}-ฯ•'\right)}\dfrac{\left .\left .\sin\left(\dfrac{ฯ•'}{n}\right)+\sin\right(\dfrac{\theta_{0}}{n}\right)}{\left .\left .\sin\left(\dfrac{ฯ•+\pi}{n}\right)+\sin\right(\dfrac{\theta_{0}}{n}\right)}\cot\left(\dfrac{\pi +\xi^{-}}{2n}\right)\right .\right .$
(16)
$\left . +\dfrac{\psi\left(\pi +\dfrac{n\pi}{2}-ฯ•\right)}{\psi\left(\dfrac{n\pi}{2}-ฯ•'\right)}\dfrac{\left .\left .\sin\left(\dfrac{ฯ•'}{n}\right)+\sin\right(\dfrac{\theta_{0}}{n}\right)}{\left .\left .\sin\left(\dfrac{ฯ•-\pi}{n}\right)+\sin\right(\dfrac{\theta_{0}}{n}\right)}\cot\left(\dfrac{\pi -\xi^{-}}{2n}\right)\right .$ $\left . +\dfrac{\psi\left(-\pi +\dfrac{n\pi}{2}-ฯ•\right)}{\psi\left(\dfrac{n\pi}{2}-ฯ•'\right)}\dfrac{\left .\left .\sin\left(\dfrac{ฯ•'}{n}\right)-\sin\right(\dfrac{\theta_{0}}{n}\right)}{\left .\left .\sin\left(\dfrac{ฯ•+\pi}{n}\right)+\sin\right(\dfrac{\theta_{0}}{n}\right)}\cot\left(\dfrac{\pi +\xi^{+}}{2n}\right)\right .$ $\left . +\dfrac{\psi\left(\pi +\dfrac{n\pi}{2}-ฯ•\right)}{\psi\left(\dfrac{n\pi}{2}-ฯ•'\right)}\dfrac{\left .\left .\sin\left(\dfrac{ฯ•'}{n}\right)-\sin\right(\dfrac{\theta_{0}}{n}\right)}{\left .\left .\sin\left(\dfrac{ฯ•-\pi}{n}\right)+\sin\right(\dfrac{\theta_{0}}{n}\right)}\cot\left(\dfrac{\pi -\xi^{+}}{2n}\right)\right]$

ํ•œํŽธ, ์ฆ๋ถ„ PO ๋์  ๊ธฐ์—ฌ๋ถ„์€ ๋ฌดํ•œํ‰๋ฉด์œ„์˜ ๊ท ์ผ์ „๋ฅ˜์— ์˜ํ•œ PO ํ•„๋“œ์ค‘ ๋ชจ์„œ๋ฆฌ ๋ถ€๋ถ„์˜ ์ „๋ฅ˜์— ์˜ํ•ด ์ƒ์„ฑ๋˜๋Š” ํšŒ์ ˆํŒŒ์˜ ์ผ๋ถ€๋ถ„์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌผ๋ฆฌ์ ์ธ ์˜๋ฏธ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ง€๋‚œ ์—ฐ๊ตฌ [12]์—์„œ ์ฆ๋ถ„ PO ๋์  ๊ธฐ์—ฌ๋ถ„์„ ์‹ (16)์˜ ํšŒ์ ˆํŒŒ ๊ธฐ์—ฌ๋ถ„์—์„œ์˜ ISB (incident shadow boundary)์™€ RSB (reflection shadow boundary)์—์„œ์˜ ํšŒ์ ˆํŒŒ ์„ฑ๋ถ„์ธ ๋‘ ๋ฒˆ์งธ์™€ ๋„ค ๋ฒˆ์งธํ•ญ์—์„œ ๋ฌดํ•œํ‰๋ฉด์„ ์˜๋ฏธํ•˜๋Š” n=1์„ ๋Œ€์ž…ํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ฐœ๋…์ ์œผ๋กœ ์–ป์—ˆ๋‹ค.

$D^{po_{e}}(\phi ,\: \phi')=\dfrac{1}{2}\left[\left .\dfrac{\psi\left(\pi +\dfrac{\pi}{2}-ฯ•\right)}{\psi\left(\dfrac{\pi}{2}-ฯ•'\right)}\dfrac{\left .\sin(ฯ•')+\sin(\theta_{0}\right)}{\left .\sin(ฯ•-\pi)+\sin(\theta_{0}\right)}\cot\left(\dfrac{\pi -\xi^{-}}{2}\right)\right .\right .$
(17)
$\left . +\dfrac{\psi\left(\pi +\dfrac{\pi}{2}-ฯ•\right)}{\psi\left(\dfrac{\pi}{2}-ฯ•'\right)}\dfrac{\left .\sin(ฯ•')-\sin(\theta_{0}\right)}{\left .\sin(ฯ•-\pi)+\sin(\theta_{0}\right)}\cot\left(\dfrac{\pi -\xi^{+}}{2}\right)\right]$

์‹ (17)๊ณผ ๊ฐ™์ด ๊ฐœ๋…์ ์œผ๋กœ ์–ป์€ ์ฆ๋ถ„ PO ๋์  ๊ธฐ์—ฌ๋ถ„์˜ ์‚ฐ๋ž€๊ณ„์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ PO ๋์  ๊ธฐ์—ฌ๋ถ„์„ ๊ฐ„๋‹จํ•˜๊ฒŒ ๊ณ„์‚ฐ์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ์๊ธฐ์—์„œ ํ•œ ์Œ์˜ ์ž…์‚ฌ๊ฐ๊ณผ ์‚ฐ๋ž€๊ฐ์˜ ๊ฐ๋„์— ๋Œ€ํ•ด์„œ Malyuzhinet ํ•จ์ˆ˜๋ฅผ ํšŒ์ ˆ ๊ธฐ์—ฌ๋ถ„ ๋ฟ๋งŒ์•„๋‹ˆ๋ผ PO ๋์  ๊ธฐ์—ฌ๋ถ„ ๊ณ„์‚ฐ์—๋„ ์‚ฌ์šฉํ•ด์•ผ ๋œ๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. Malyuzhinet ํ•จ์ˆ˜์€ ๋ณต์žกํ•œ ์ ๋ถ„์‹์œผ๋กœ ํ‘œํ˜„๋˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณ„์‚ฐ์‹œ๊ฐ„์ด ๊ธ‰๊ฒฉํ•˜๊ฒŒ ์ƒ์Šนํ•œ๋‹ค๋Š” ๋ฌธ์ œ์ ์ด ์žˆ์œผ๋ฉฐ, ๊ธฐ์กด์˜ ์ˆ˜์‹ (17)์˜ ๊ฒฝ์šฐ ๊ต์ฐจํŽธํŒŒ ์„ฑ๋ถ„์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์ „ํ˜€ ์ œ๊ณตํ•˜์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค.

PO ๋์  ๊ธฐ์—ฌ๋ถ„์˜ ์ •์˜์— ๋”ฐ๋ผ ๊ท ์ผ์ „๋ฅ˜๋ฅผ ์๊ธฐ์˜ ๋๋ถ€๋ถ„์—์„œ๋งŒ ๊ตญ๋ถ€์ ์œผ๋กœ ์ ๋ถ„์„ ํ†ตํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์ด PO ๋์  ๊ธฐ์—ฌ๋ถ„์„ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

(18)
$\overline{E}_{e}^{po}=(-jk)\iint_{sl}\left .\left[\eta_{0 }\overline{J_{s}}+\overline{J}_{m}\times\hat{r}\right .\right]\dfrac{e^{-jk R}}{4\pi R}ds'$

์—ฌ๊ธฐ์„œ ์กฐ์‚ฌ๋œ ํ‘œ๋ฉด slit์€ ์๊ธฐ์˜ ์œ—๋ฉด์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋ฅผ ์๊ธฐ ์ขŒํ‘œ์— ๋งž๊ฒŒ ์ ๋ถ„๊ตฌ๊ฐ„์„ ์ •์˜ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ ์„ ์ˆ˜ ์žˆ๋‹ค.

(19)
\begin{align*}\overline{E}_{e}^{po}\dfrac{=(-jk)}{4\pi}\int_{0}^{\infty}\int_{-\infty}^{\infty}\left .\left[\eta_{0 }\overline{J_{s}}+\overline{J}_{m}\times\hat{r}\right .\right]\\\bullet\dfrac{e^{-jk\sqrt{(x-x')^{2}+y^{2}+(z-z')^{2}}}}{\sqrt{(x-x')^{2}+y^{2}+(z-z')^{2}}}dz'dx'\end{align*}

์ด๋Ÿฌํ•œ ์ ๋ถ„์€ [13]์—์„œ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ๊ณผ ๊ฐ™์ด ์ •๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.

(20)
$\left .\overline{E}_{e}^{PO}\simeq\dfrac{e^{-jk_{0}s}}{\sqrt{s}}\dfrac{e^{-j\pi /4}}{\sqrt{2\pi k_{0}}}\dfrac{1}{\sin\beta^{i}\left(\cos\phi +\cos\phi_{0})\right .}\left[\eta_{0 }\overline{J_{s}}+\overline{J}_{m}\times\hat{r}\right]\right.$

์•ž์„  UTD ํšŒ์ ˆํŒŒ๋กœ๋ถ€ํ„ฐ ํšŒ์ ˆ๊ณ„์ˆ˜๋ฅผ ์œ ์ถ”ํ•œ ๊ฒƒ์ฒ˜๋Ÿผ ์‹ (20)์˜ PO ๋์  ์‚ฐ๋ž€ํŒŒ๋กœ๋ถ€ํ„ฐ ์‚ฐ๋ž€๊ณ„์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.

(21)
$\overline{\overline{D}}_{e}^{po}=\dfrac{-1}{\cos\phi +\cos\phi_{0}}\left[\eta_{0 }\overline{J_{s}}+\overline{J}_{m}\times\hat{r}\right]$

์œ„ ์ˆ˜์‹์˜ ์˜ค๋ฅธ์ชฝ ํ•ญ์€ IBC PO ๊ณ„์‚ฐ์‹œ ์‚ฌ์šฉํ–ˆ๋˜ ์‹ (8)์—์„œ์˜ ์ค‘๊ด„ํ˜ธ๋กœ ํ‘œํ˜„๋œํ•ญ๊ณผ ๋™์ผํ•˜๋‹ค. ๋”ฐ๋ผ์„œ IBC PO์—์„œ ๊ณ„์‚ฐํ•œ ๋ฐฉ์‹๊ณผ ๋™์ผํ•˜๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, IBC PO ๊ณ„์‚ฐ์‹œ ๊ตญ๋ถ€์ขŒํ‘œ๊ณ„๊ฐ€ ์‚ฐ๋ž€์ฒด ํ‘œ๋ฉด์— xyํ‰๋ฉด์— ๋†“์ด๋Š” ๋ฐ˜๋ฉด ์๊ธฐ์—์„œ์˜ PO ๋์  ๊ธฐ์—ฌ๋ถ„ ๊ณ„์‚ฐ์‹œ ๊ทธ๋ฆผ 3๊ณผ ๊ฐ™์ด ์๊ธฐํ‰๋ฉด์ด zxํ‰๋ฉด์— ๋†“์ด๊ธฐ ๋•Œ๋ฌธ์— zxํ‰๋ฉด์—์„œ xyํ‰๋ฉด์œผ๋กœ ์ขŒํ‘œ๋ณ€ํ™˜ ํ›„ ์‹ (10)์„ ๊ณ„์‚ฐํ•ด์•ผ ํ•œ๋‹ค.

๊ทธ๋ฆผ 3. ์ฆ๋ถ„ PO ๋์  ๊ธฐ์—ฌ๋ถ„ ๊ณ„์‚ฐ์‹œ ๊ตญ๋ถ€ ์ขŒํ‘œ๊ณ„

Fig. 3. local coordinate for incremental PO edge contribution

../../Resources/kiee/KIEE.2024.73.7.1204/fig3.png

์ขŒํ‘œ๋ณ€ํ™˜ ์ „ํ›„์˜ ์ž…์‚ฌํŒŒ ฮธ-ํŽธํŒŒ์™€ ๐œ™-ํŽธํŒŒ ๋ฒกํ„ฐ๋ฅผ ๊ฐ๊ฐ $\hat{\theta}_{i}$,$\hat{\theta}_{i,\: t}$,$\hat{\phi}_{i}$,$\hat{\phi}_{i,\: t}$์ด๊ณ , ์ขŒํ‘œ๋ณ€ํ™˜ ์ „ํ›„์˜ ์‚ฐ๋ž€ํŒŒ์™€ ฮธ-ํŽธํŒŒ์™€ ๐œ™-ํŽธํŒŒ ๋ฒกํ„ฐ๋ฅผ ๊ฐ๊ฐ $\hat{\theta}_{r}$,$\hat{\theta}_{r,\: t}$,$\hat{\phi}_{r}$,$\hat{\phi}_{r,\: t}$๋ผ๊ณ  ์ •์˜ํ•˜๋ฉด ์ขŒํ‘œ๋ณ€ํ™˜์ด ๊ณ ๋ ค๋œ PO ๋์  ์‚ฐ๋ž€ํŒŒ๋ฅผ ์œ„ํ•œ ์‚ฐ๋ž€๊ณ„์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

(22)
$\overline{\overline{D}}_{e}^{po}=\dfrac{-1}{2}\begin{bmatrix}\hat{\theta}_{r}\bullet\hat{\theta}_{r,\: t}&\hat{\theta}_{r}\bullet\hat{\phi}_{r,\: t}\\\hat{\phi}_{r}\bullet\hat{\theta}_{r,\: t}&\hat{\phi}_{r}\bullet\hat{\phi}_{r,\: t}\end{bmatrix}\begin{bmatrix}D_{\theta\theta}&D_{\theta\phi}\\D_{\phi\theta}&D_{\phi\phi}\end{bmatrix}\begin{bmatrix}\hat{\theta}_{i,\: t}\bullet\hat{\theta}_{i}&\hat{\theta}_{i,\: t}\bullet\hat{\phi}_{i}\\\hat{\phi}_{i,\: t}\bullet\hat{\theta}_{i}&\hat{\phi}_{i,\: t}\bullet\hat{\phi}_{i}\end{bmatrix}$

์ œ์•ˆํ•œ ์‹ (21)๊ณผ ๊ธฐ์กด์˜ ์‹(17)์˜ ๊ฐ€์žฅ ํฐ ์ฐจ์ด์ ์€ Malyuzhinets ํ•จ์ˆ˜๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ Malyuzhinets ํ•จ์ˆ˜์˜ ์ ๋ถ„์ด ๊นŒ๋‹ค๋กœ์šด ํŽธ์ด๊ณ  ๋งŽ์€ ๊ณ„์‚ฐ์‹œ๊ฐ„์ด ์š”๊ตฌ๋œ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆํ•œ ์‚ฐ๋ž€๊ณ„์ˆ˜๋Š” PO ๋์  ๊ธฐ์—ฌ๋ถ„์—์„œ์˜ ๊ต์ฐจํŽธํŒŒ ์„ฑ๋ถ„์„ ์–ป์„ ์ˆ˜ ์žˆ์ง€๋งŒ, ๊ธฐ์กด์˜ ์‚ฐ๋ž€๊ณ„์ˆ˜๋กœ๋Š” ๊ต์ฐจํŽธํŒŒ ์„ฑ๋ถ„์„ ์–ป์„ ์ˆ˜ ์—†๋‹ค.

4. ํ•ด์„๊ฒฐ๊ณผ

4.1 IBC PO ์‚ฐ๋ž€ํŒŒ ํ•ด์„๊ฒฐ๊ณผ

๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•˜๋Š” ํ‘œ๊ธฐ๋ฒ•์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ตฌํ˜„๋œ IBC PO๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ 1 m ร— 1 m ํฌ๊ธฐ์˜ ์œ ์ „์ฒด ์ฝ”ํŒ…๋œ ์‚ฌ๊ฐํ˜• ๋„์ฒดํŒ์— ์˜ํ•œ PO ์‚ฐ๋ž€ํŒŒ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์ „์ž๊ธฐ ํ•ด์„ํˆด์ธ FKEO์™€ VIRAF์˜ ๊ณ„์‚ฐ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ฒ€์ฆ์„ ์œ„ํ•œ ์‚ฐ๋ž€์ฒด ๊ตฌ์กฐ๋Š” ๊ทธ๋ฆผ 4์™€ ๊ฐ™์œผ๋ฉฐ, ์™„์ „๋„์ฒด (PEC; perfectly effective conductor)์œ„์— ๋น„์œ ์ „์œจ ($\epsilon_{r}$) 10, ์ „๋„๋„ (ฯƒ) 0.04 S/m์˜ ์œ ์ „์ฒด๊ฐ€ 0.04 m์˜ ๋‘๊ป˜๋กœ ์ฝ”ํŒ…๋˜์–ด ์žˆ๋‹ค.

๊ทธ๋ฆผ 4. IBC PO ์‚ฐ๋ž€ํŒŒ ํ•ด์„์„ ์œ„ํ•œ 1m2์˜ ์œ ์ „์ฒด ์ฝ”ํŒ…๋œ ์‚ฌ๊ฐํ˜• ๊ธˆ์† ์‚ฐ๋ž€์ฒด

Fig. 4. Dielectric coated rectangular PEC scatterer for IBC PO field

../../Resources/kiee/KIEE.2024.73.7.1204/fig4.png

์ฝ”ํŒ…๋œ ๊ธˆ์†์— ์ˆ˜์ง์œผ๋กœ ์ž…์‚ฌํ•˜๋Š” ํ•„๋“œ์— ๋Œ€ํ•œ ํ‘œ๋ฉด ์ž„ํ”ผ๋˜์Šค๋Š” 700 MHz์—์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋œ๋‹ค.

(23)
\begin{align*}Z=j\eta\tan(Nk_{0}d)=j\sqrt{\dfrac{\mu_{0}}{\epsilon_{0}\epsilon_{r}} }\tan\left(\sqrt{\epsilon /\epsilon_{0}}k_{0}d\right)\\=146.8-j355.69\end{align*}

FEKO๋ฅผ ์ด์šฉํ•œ IBC PO ๊ณ„์‚ฐ์‹œ ์œ ์ „์ฒด ํŠน์„ฑ ๋ฐ ๋‘๊ป˜ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜๊ณ , FEKO์˜ IBC MoM, VIRAF์˜ IBC PO, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ IBC PO ๊ณ„์‚ฐ์‹œ์—๋Š” ์‹ (23)๋กœ ๊ณ„์‚ฐ๋œ ๋“ฑ๊ฐ€ ํ‘œ๋ฉด์ž„ํ”ผ๋˜์Šค ์ •๋ณด๋ฅผ ์ ์šฉํ•œ๋‹ค.

์ž…์‚ฌํŒŒ๊ฐ€ $\theta_{i}=90^{\circ}$, $\phi_{i}=0^{\circ}$์˜ ๊ฐ๋„๋กœ ์ž…์‚ฌํ•˜๋Š” ๊ฒฝ์šฐ, $\theta_{s}=90^{\circ}$, $\phi_{s}=0^{\circ}\sim 90^{\circ}$์˜ ๊ฐ๋„์—์„œ ์‚ฐ๋ž€ํŒŒ๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ํŽธํŒŒ๋ณ„๋กœ ๊ทธ๋ฆผ 5์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ ์šฉํ•œ IBC PO์˜ ๊ฒฐ๊ณผ๋Š” VIRAF์˜ IBC PO์™€๋Š” ๋™์ผํ•œ RCS ๊ฐ’์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด์— FEKO์˜ PO์™€ IBC MoM ๊ฒฐ๊ณผ์™€ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ ์šฉํ•œ IBC PO์˜ ๊ฒฐ๊ณผ๋Š” $\phi\phi$-์™€ $\theta\theta$-ํŽธํŒŒ RCS์—์„œ ๋ชจ๋‘ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค. FEKO์˜ ๊ฒฝ์šฐ IBC PO solver ์—†์ด ์ฝ”ํŒ…๋œ ๋„์ฒด์— ๋Œ€ํ•œ PO์™€ IBC MoM solver๋งŒ ์ œ๊ณต๋˜๊ธฐ ๋•Œ๋ฌธ์— IBC PO Solver๊ฐ€ ์—†์–ด ์ง์ ‘์ ์ธ ๋น„๊ต๊ฐ€ ์–ด๋ ค์šฐ๋ฉฐ ์ฐธ๊ณ ์น˜ ์ •๋„๋กœ ํ™œ์šฉ๋˜์—ˆ๋‹ค.

๊ทธ๋ฆผ 5. 1 m2์˜ ์œ ์ „์ฒด ์ฝ”ํŒ…๋œ ์‚ฌ๊ฐํ˜• ๊ธˆ์† ์‚ฐ๋ž€์ฒด์— ์˜ํ•œ Bistatic RCS: (a) ๐œ™๐œ™- (b)ฮธฮธ-ํŽธํŒŒ

Fig. 5. Bistatic RCS with dielectric coated square metal scatterer: (a) ๐œ™๐œ™- (b)ฮธฮธ-polarization

../../Resources/kiee/KIEE.2024.73.7.1204/fig5.png

4.2 ์ฆ๋ถ„ Fringe ํ•„๋“œ ํ•ด์„๊ฒฐ๊ณผ

์ œ์•ˆํ•œ ์ฆ๋ถ„ PO๋์  ๊ธฐ์—ฌ๋ถ„ ์ˆ˜์‹์„ ์ ์šฉํ•œ ์๊ธฐ์— ์˜ํ•œ ์ฆ๋ถ„ Fringe ํ•„๋“œ ๊ธฐ์—ฌ๋ถ„์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ทธ๋ฆผ 6๊ณผ ๊ฐ™์€ 60ยฐ์˜ ๋‚ด๋ถ€๊ฐ๋„๋ฅผ ๊ฐ€์ง€๋Š” ์๊ธฐ๊ตฌ์กฐ(n =1.6667)์— ๋Œ€ํ•ด์„œ ํ‘œ๋ฉด ์ž„ํ”ผ๋˜์Šค Zs๊ฐ€ 0์ธ ์™„์ „๋„์ฒด์™€ 0.5ฮฉ ๋‘๊ฐ€์ง€ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด์„œ ๊ณ ๋ คํ•˜์˜€๋‹ค. ์ฐธ๊ณ ๋กœ ์ฆ๋ถ„ Fringe ํ•„๋“œ (${F}^{fw}$)์„ 2์ฐจ์› ์๊ธฐ์— ๋Œ€ํ•ด์„œ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋Š” EM ํ•ด์„ํˆด์€ ์กด์žฌํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋ณ„๋„๋กœ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•๊ณผ์˜ ๋น„๊ต๋Š” ์ˆ˜ํ–‰ํ•˜์ง€ ์•Š์•˜๋‹ค.

๊ทธ๋ฆผ 6. 60๋„์˜ ๋‚ด๋ถ€ ๊ฐ๋„๋ฅผ ๊ฐ€์ง€๋Š” 2์ฐจ์› ์๊ธฐ ๊ตฌ์กฐ

Fig. 6. Two-Dimensional wedge with the internal angle of 60 degrees

../../Resources/kiee/KIEE.2024.73.7.1204/fig6.png

๊ทธ๋ฆผ 6์˜ ์๊ธฐ ๊ตฌ์กฐ์— ๊ณ ์ •๋œ ์ž…์‚ฌ๊ฐ ๐œ™โ€ฒ=30ยฐ์— ์๊ธฐ ์ „์ฒด ๊ด€์ธก๊ฐ ๐œ™ = 0ยฐ~360ยฐ์—์„œ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ๋ฅผ ๊ทธ๋ฆผ 8์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.ํšŒ์ ˆ๊ธฐ์—ฌ๋ถ„๊ณผ ์ œ์•ˆํ•œ PO๋์  ๊ธฐ์—ฌ๋ถ„ ๊ณ„์‚ฐ์‹์€ ํ‘œ๋ฉด์ž„ํ”ผ๋˜์Šค ์™ธ ์—๋„ PEC์—์„œ๋„ ์ •์ƒ์ ์œผ๋กœ ๊ณ„์‚ฐ๋˜์–ด์•ผ ํ•œ๋‹ค. ํšŒ์ ˆ๊ธฐ์—ฌ๋ถ„๊ณผ PO๋์  ๊ธฐ์—ฌ๋ถ„ ๋ชจ๋‘ ๊ทธ๋ฆผ 8(a)์™€ ๊ฐ™์ด ISB์™€ RSB์ธ ๐œ™ = 210ยฐ, 150ยฐ์—์„œ ๋ฐœ์‚ฐํ•˜์—ฌ 0์œผ๋กœ ์˜ˆ์™ธ์ฒ˜๋ฆฌ ๋˜๋Š” ์ง€์ ์„ ์ œ์™ธํ•˜๊ณ ๋Š” ์ •์ƒ์ ์œผ๋กœ ๊ณ„์‚ฐ๋œ๋‹ค. ์—ฌ๊ธฐ์„œ ISB์™€ RSB์—์„œ ๋ฐœ์‚ฐํ•˜๋Š” ๊ฒƒ์€ ํšŒ์ ˆ๊ธฐ์—ฌ๋ถ„์˜ ๊ฒฝ์šฐ ์‹ (16)์—์„œ์˜ cotํ•ญ์— ์˜ํ•ด ๋ฐœ์‚ฐํ•˜๋Š” ๊ฒƒ์œผ๋กœ PO ๋์  ๊ธฐ์—ฌ๋ถ„๊ณผ์˜ ์ฐจ๋ฅผ ํ†ตํ•˜์—ฌ ์ผ์ •ํ•œ ๊ฐ’์˜ Fringe ํ•„๋“œ๋ฅผ ์–ป์–ด์•ผ ํ•˜์ง€๋งŒ ์ปดํ“จํ„ฐ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์„ ํ†ตํ•œ ๊ฐ’์˜ ๋ฒ”์œ„๋ฅผ ๋„˜์–ด์„œ๊ธฐ ๋•Œ๋ฌธ์— ์˜ˆ์™ธ์ฒ˜๋ฆฌ ๋˜์—ˆ๋‹ค.

๊ทธ๋ฆผ 7. 60๋„ ์๊ธฐ์— ์˜ํ•œ ๐œƒ๐œƒ-ํŽธํŒŒ ํ•„๋“œ ๊ณ„์‚ฐ๊ฒฐ๊ณผ: (a) PEC ์๊ธฐ์— ์˜ํ•œ ์ฆ๋ถ„ ํšŒ์ ˆ๊ธฐ์—ฌ๋ถ„, PO ๋์  ๊ธฐ์—ฌ๋ถ„ ๋ฐ (b) ์ฆ๋ถ„ Fringe ๊ธฐ์—ฌ๋ถ„, (c) 0.5โ„ฆ ํ‘œ๋ฉด์ž„ํ”ผ๋˜์Šค๋ฅผ ๊ฐ€์ง€๋Š” ์๊ธฐ์— ์˜ํ•œ์ฆ๋ถ„ ํšŒ์ ˆ๊ธฐ์—ฌ๋ถ„, PO ๋์  ๊ธฐ์—ฌ๋ถ„ ๋ฐ (b) P์ฆ๋ถ„ Fringe ๊ธฐ์—ฌ๋ถ„.

Fig. 7. ๐œƒ๐œƒ-polarized field by 60 degree wedge: (a) incremental diffraction contribution, PO edge contribution, and (b) incremental fringe contribution by PEC wedge, (c) incremental diffraction contribution, PO edge contribution, and (d) incremental fringe contribution by impedance wedge.

../../Resources/kiee/KIEE.2024.73.7.1204/fig7.png

ํšŒ์ ˆ๊ธฐ์—ฌ๋ถ„๊ณผ PO๋์  ๊ธฐ์—ฌ๋ถ„์ด ๊ฑฐ์˜ ๋น„์Šทํ•œ ๋ ˆ๋ฒจ๊ณผ ์–‘์ƒ์„ ๊ฐ€์ง€๊ณ , ์ด ๋‘ ๊ธฐ์—ฌ๋ถ„์˜ ์ฐจ์ธ ์ฆ๋ถ„ Fringe ๊ธฐ์—ฌ๋ถ„์ด ๊ทธ๋ฆผ 7(b)์™€ ๊ฐ™์ด ์—ฐ์†์ ์ธ ๊ฐ’์„ ๊ฐ€์ง์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋™์ผํ•œ ๊ตฌ์กฐ์ด์ง€๋งŒ ํ‘œ๋ฉด ์ž„ํ”ผ๋˜์Šค๊ฐ€ 0.5ฮฉ์ธ ์๊ธฐ์— ์ ์šฉํ•œ ๊ฒฐ๊ณผ๋Š” ๊ทธ๋ฆผ 7(c)์™€ (d)์™€ ๊ฐ™๋‹ค. PEC๊ฐ€ ์•„๋‹Œ ํ‘œ๋ฉด์ž„ํ”ผ๋˜์Šค๋ฅผ ๊ฐ€์ง€๋Š” ๊ฒฝ์šฐ์—๋„ ๋น„์Šทํ•˜๊ฒŒ ํŠน์ด์  ์—†์ด ์ฆ๋ถ„ ํšŒ์ ˆ๊ธฐ์—ฌ๋ถ„, PO ๋์  ๊ธฐ์—ฌ๋ถ„, Fringe ๊ธฐ์—ฌ๋ถ„๋“ค์ด PEC์™€ ์œ ์‚ฌํ•˜๊ฒŒ ๊ณ„์‚ฐ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ, Fringe ๊ธฐ์—ฌ๋ถ„์˜ ๋ ˆ๋ฒจ์ด PEC๋ณด๋‹ค ์กฐ๊ธˆ ๋‚ฎ์€ ๋ ˆ๋ฒจ์„ ๊ฐ€์ง€๋Š” ์ƒ์‹์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

4.3 ์ด ์‚ฐ๋ž€ํŒŒ ํ•ด์„ ๊ฒฐ๊ณผ

๋ณธ ์—ฐ๊ตฌ์—์„œ ์ ์šฉํ•œ IBC PO์™€ ์ฆ๋ถ„ PO ๋์  ๊ธฐ์—ฌ๋ถ„์˜ ๊ณ„์‚ฐ ๋ฐฉ๋ฒ•์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ทธ๋ฆผ 8๊ณผ ๊ฐ™์ด 5ฮป ๋‘๊ป˜์™€ 10ฮป ์ง€๋ฆ„์„ ๊ฐ€์ง€๋Š” ์›ํ†ตํ˜• ๊ตฌ์กฐ๋ฌผ์— ์˜ํ•œ monostatic RCS๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค. ITD์™€ ๊ฐ™์€ ์ฆ๋ถ„๊ธฐ๋ฒ•์€ ๊ณก๋ฉด์˜ ์๊ธฐ์—๋„ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ณก๋ฉด์˜ ์๊ธฐ๊ฐ€ ํฌํ•จ๋œ ์›ํ†ตํ˜• ๊ตฌ์กฐ๋ฌผ์ด ์„ ํƒ๋˜์—ˆ๋‹ค.

๊ทธ๋ฆผ 8. ์ž„ํ”ผ๋˜์Šค ํ‘œ๋ฉด์„ ๊ฐ€์ง€๋Š” 5ฮป ๋†’์ด์™€ 10ฮป ์ง€๋ฆ„์˜ ์›ํ†ตํ˜• ์‚ฐ๋ž€์ฒด

Fig. 8. Cylindrical scatterer with 5ฮป-height and 10ฮป-diameter with an impedance surface

../../Resources/kiee/KIEE.2024.73.7.1204/fig8.png

์›ํ†ตํ˜• ๊ตฌ์กฐ๋ฌผ์˜ ํ‘œ๋ฉด ์ž„ํ”ผ๋˜์Šค Zs๊ฐ€ 0.5ฮฉ์ธ ๊ฒฝ์šฐ์— ๋Œ€ํ•ด์„œ 10 GHz ์ฃผํŒŒ์ˆ˜์—์„œ ฮธ = 90ยฐ, ๐œ™ = 0ยฐ~360ยฐ๋กœ ์ž…์‚ฌ๊ฐ๊ณผ ์‚ฐ๋ž€๊ฐ์„ ๊ฐ™์ด ๋ณ€๊ฒฝํ•˜๋ฉฐ ฮธฮธ-ํŽธํŒŒ์˜ IBC PO, Fringe ํ•„๋“œ, ์ด ์‚ฐ๋ž€ํŒŒ (= POํ•„๋“œ + Fringe ํ•„๋“œ) ๊ณ„์‚ฐํ•˜์—ฌ ๊ทธ๋ฆผ 9์— ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค.

๊ทธ๋ฆผ 9(a)์˜ IBC PO์˜ ๊ฒฐ๊ณผ๋Š” ์ž…์‚ฌ(์‚ฐ๋ž€)๊ฐ์— ๋”ฐ๋ฅธ VIRAF์˜ ๊ฒฐ๊ณผ์™€ ์ •ํ™•ํ•˜๊ฒŒ ์ผ์น˜ํ•œ๋‹ค. ๊ทธ๋ฆผ 9(b)๋Š” ํšŒ์ ˆํŒŒ์—์„œ PO๊ธฐ์—ฌ๋ถ„์„ ์ œ๊ฑฐํ•œ Fringe ํ•„๋“œ์˜ ๊ณ„์‚ฐ๊ฒฐ๊ณผ๋กœ, ์„ ํ–‰์—ฐ๊ตฌ์™€ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ๊ณ„์‚ฐ๋ฐฉ๋ฒ•์œผ๋กœ ๊ณ„์‚ฐ๊ฒฐ๊ณผ์™€ VIRAF์˜ ๊ณ„์‚ฐ๊ฒฐ๊ณผ ๋น„์Šทํ•œ ํŒจํ„ด์„ ๊ฐ€์ง€์ง€๋งŒ RCS ๋ ˆ๋ฒจ์ด 5~8 dB๊ฐ€ ๋” ๋‚ฎ๊ฒŒ ๋‚˜์˜จ๋‹ค. ์ž„ํ”ผ๋˜์Šค ํ‘œ๋ฉด์„ ๊ฐ€์ง€๋Š” ์‚ฐ๋ž€์ฒด์— ๋Œ€ํ•˜์—ฌ VIRAF๋กœ ๊ณ„์‚ฐํ•œ Fringe ํ•„๋“œ์˜ ๊ฒฐ๊ณผ๊ฐ€ ๋‚ฎ์€ ๋ ˆ๋ฒจ์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์€ [12]์—์„œ๋„ ๋น„์Šทํ•œ ๊ฒฐ๊ณผ๋กœ VIRAF์˜ ๊ฒฐ๊ณผ๊ฐ€ ๋ถ€์ •ํ™•ํ•œ ๊ฒƒ์ž„์„ ์ด๋ฏธ ํ™•์ธ๋˜์—ˆ๋‹ค. ํŒŒ๋ž€์ƒ‰์˜ ์‹ค์„ ์€ ์‹ (17)์˜ ๊ธฐ์กด์˜ ๊ฐœ๋…์ ์ธ PO ๊ธฐ์—ฌ๋ถ„์œผ๋กœ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ์ด๊ณ , ๊ฒ€์ •์ƒ‰์˜ ์ ์„ ์€ ์‹ (21)์˜ ์ œ์•ˆํ•œ PO ๊ธฐ์—ฌ๋ถ„์œผ๋กœ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ์ด๋‹ค. Fringe ํ•„๋“œ์˜ ๊ฒฝ์šฐ 180ยฐ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ •ํ™•ํ•œ ์ขŒ์šฐ ๋Œ€์นญ์ด ์•ˆ๋˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ด๋Š” ๋ฐ˜๋ฉด, ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์€ ์ •ํ™•ํ•˜๊ฒŒ ์ขŒ์šฐ ๋Œ€์นญ์œผ๋กœ ์ •ํ™•๋„๊ฐ€ ๋” ๋†’๋‹ค๊ณ  ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆผ 9(c)์™€ ๊ฐ™์ด POํ•„๋“œ์™€ Fringe ํ•„๋“œ๋ฅผ ํ•ฉํ•œ ์ด ์‚ฐ๋ž€ํŒŒ์˜ ๊ฒฝ์šฐ์—๋„ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ์ •ํ™•ํ•˜๊ฒŒ ์ขŒ์šฐ๋Œ€์นญ์˜ ์‹ ๋ขฐ์„ฑ ๋†’์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค.

๊ทธ๋ฆผ 9. ์›ํ†ตํ˜• ์‚ฐ๋ž€์ฒด์— ์˜ํ•œ ๐œƒ๐œƒํŽธํŒŒ ํ•„๋“œ ํ•ด์„๊ฒฐ๊ณผ: (a) IBC PO ์‚ฐ๋ž€ํŒŒ, (b) Fringe ํ•„๋“œ ๋ฐ (c) ์ด ์‚ฐ๋ž€ํŒŒ

Fig. 9. ๐œƒ๐œƒ-polarized field by cylindrical scatterer: (a) IBC PO field, (b) fringe field, and (c) total scattered field.

../../Resources/kiee/KIEE.2024.73.7.1204/fig9.png

5. ๊ฒฐ ๋ก 

๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ฮธํŽธํŒŒ์™€ ๐œ™ํŽธํŒŒ์˜ ์ž…์‚ฌํŒŒ์™€ ์‚ฐ๋ž€ํŒŒ ๊ณ„์‚ฐ์— ์ ํ•ฉํ•œ IBC PO ์‚ฐ๋ž€ํŒŒ ์ˆ˜์‹์„ ์ •๋ฆฌํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด์˜ ์—ฐ๊ตฌ์—์„œ Fringe ํ•„๋“œ๋ฅผ ์–ป๊ธฐ์œ„ํ•ด ํ•„์š”ํ•œ PO ๋์  ๊ธฐ์—ฌ๋ถ„์„ ๊ฐœ๋…์ ์œผ๋กœ ํšŒ์ ˆ๊ณ„์ˆ˜ ์ค‘ ์ผ๋ถ€๋ฅผ ์ด์šฉํ•œ ์ˆ˜์‹์ด ์‚ฌ์šฉ๋œ ๋ฐ˜๋ฉด, ๋ณธ ๋…ผ๋ฌธ์—์„œ PO ๋์  ๊ธฐ์—ฌ๋ถ„์˜ ์ •์˜๋กœ๋ถ€ํ„ฐ ์ ๋ถ„ ์ˆ˜์‹์„ ์ •๋ฆฌํ•˜์—ฌ PO ๋์  ๊ธฐ์—ฌ๋ถ„์˜ ์‚ฐ๋ž€๊ณ„์ˆ˜๋ฅผ ์ •๋ฆฝํ•˜์˜€๋‹ค.

IBC PO๋Š” ์ฝ”ํŒ…๋œ ์‚ฌ๊ฐํ˜• ๊ธˆ์†ํŒ์— ์ ์šฉํ•˜์—ฌ MoM๊ณผ VIRAF ํ•ด์„ํˆด์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ต‘ํ•˜์—ฌ ๊ฒ€์ฆํ•˜์˜€๊ณ , PO ๋์  ๊ธฐ์—ฌ๋ถ„ ๊ณ„์‚ฐ๋ฐฉ๋ฒ•์€ 2์ฐจ์› ์ž„ํ”ผ๋˜์Šค ์๊ธฐ์— ์ ์šฉํ•˜์—ฌ ๊ฒ€์ฆํ•˜์˜€๋‹ค. IBC PO์™€ Fringe ํ•„๋“œ์˜ ํ•ฉ์ธ ์ด ์‚ฐ๋ž€ํŒŒ ๊ฒ€์ฆ์„ ์œ„ํ•˜์—ฌ ๊ณก์„ ์˜ ์๊ธฐ ์กฐํ•ฉ์œผ๋กœ ๊ตฌ์„ฑ๋œ ์›ํ†ตํ˜• ์‚ฐ๋ž€์ฒด์— ์ œ์•ˆํ•œ ๊ณ„์‚ฐ๋ฐฉ๋ฒ•๊ณผ VIRAF ํ•ด์„ํˆด์„ ์ ์šฉํ•˜์—ฌ ๊ฒ€์ฆ์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.

PTD ๊ธฐ๋ฒ•์ฒ˜๋Ÿผ PO ํ•„๋“œ์™€ Fringe ํ•„๋“œ์˜ ํ•ฉ์œผ๋กœ ์ด ์‚ฐ๋ž€ํŒŒ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ๋ฒ•๋“ค์ด ์ž…์‚ฌ๊ฐ๊ณผ ์‚ฐ๋ž€๊ฐ์ด 180ยฐ ์ฐจ์ด๋‚˜๋Š” ๊ฒฝ์šฐ grazing singularity๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ํŠน์„ฑ์ด ์žˆ๋‹ค. ITD ๊ธฐ๋ฒ•์—์„œ๋„ ๋™์ผํ•œ ๋ฌธ์ œ์ ์ด ๋ฐœ์ƒํ•˜๋ฉฐ ํ–ฅํ›„ ITD ๊ธฐ๋ฒ•์—์„œ Grazing Singularity๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ• ์—ฐ๊ตฌ๋กœ ํ™•์žฅํ•  ๊ณ„ํš์ด๋‹ค.

Acknowledgements

This work was supported by the Agency for Defense Development Grant, funded by the Korean Government (No. UD210001FD).

References

1 
F. HacฤฑvelioฤŸlu, M. Alper Uslu and L. Sevgi, "A MATLAB-Based Virtual Tool for the Electromagnetic Wave Scattering from a Perfectly Reflecting Wedge," IEEE Antennas and Propagation Magazine, vol. 53, no. 6, pp. 234-243, Dec. 2011, doi: 10.1109/MAP.2011.6157766.URL
2 
C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons Inc, 2012.URL
3 
P. Y. Ufimtsev, Fundamentals of the Physical Theory of Diffraction, Wiley-IEEE Press, 2014.URL
4 
J. H. Kwon, C. H. Hyoung, J.-H. Hwang, and H. H. Park, โ€œImprovement in Shielding Effectiveness of Large Enclosures Using Electromagnetic Absorbers,โ€ The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 32, no. 2, pp. 164-167, Feb. 2022.DOI
5 
E. O. Boadu, K. K. Mireku, and K. Gbongli, โ€œPhysical Optics and the Impedance Boundary Condition,โ€ American Journal of Engineering Research (AJER), vol. 6, no. 7, pp. 17โ€“29, 2017.URL
6 
H. Kobayashi, S. Shi, and Y. Yamaguchi, โ€œPolarimetric RCS Prediction Software Code for Large and Complex Objects,โ€ Journal of Control Engineering and Technology (JCET), vol. 2, no. 3, July 2012.URL
7 
J.-H. Nam, J.-U. You, and I.-S. Koh, โ€œLarge Complex Impedance and Dielectric Inhomogeneous Structure Scattering Analysis Based on Multi-Level Fast Multipole Method and Iterative Physical Optics,โ€ The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 32, no. 10, pp. 916-924, Oct. 2021.DOI
8 
K. Kim, J.-H. Kim, T.-M. Choi, and D.-S. Cho, โ€œDevelopment of radar cross section analysis system of naval ships,โ€ International Journal of Naval Architecture and Ocean Engineering, vol. 4, no. 1, pp. 20-32, Mar. 2012.DOI
9 
R. Tiberio, S. Maci, and A. Toccafondi, "An incremental theory of diffraction: electromagnetic formulation," IEEE Transactions on Antennas and Propagation, vol. 43, no. 1, pp. 87-96, 1995.DOI
10 
S. Lee, H. Lee, H. Shin, D. Yoon, and Y. B. Park, "Analysis of radar cross-section of perfect electric conductor scatterer using the incremental theory of diffraction," Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 32, no. 10, pp. 925โ€“932, 2021. https://doi.org/10.5515/KJKIEES.2021.32.10.925DOI
11 
J. I. Lee, H. S. Lee, S. H. Lee, and D. W. Seo, "Application of incremental theory of diffraction formulation for bistatic RCS estimation," Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 33, no. 3, pp. 238โ€“243, 2022.DOI
12 
J.-S. Kim, H. Kim, J.-Y. Park, and D.-W. Seo, "Heuristic Incremental Theory of Diffraction for Wedge with Impedance Surfaces," Journal of Electromagnetic Engineering and Science, vol. 24, no. 2, pp. 191-197, Mar. 2024.DOI
13 
T. B. A. Senior and J. L. Volakis, Appoximate Boundary Condition in Electromagnetics, The Institution of Electrical Engineers, 1995.URL

์ €์ž์†Œ๊ฐœ

๊น€์ค€์„  (Jun-Seon Kim)
../../Resources/kiee/KIEE.2024.73.7.1204/au1.png

He received his B.S. and M.S. degree in radio engineering from National Korea Maritime & Ocean University (KMOU), Busan, South Korea in 2022 and 2024, respectively. He is currently working toward his Ph.D. degree at the same university. His research interests include numerical techniques in the areas of electromagnetics and radar cross-section analysis.

์ดํ˜„์ˆ˜ (Hyun-Soo Lee)
../../Resources/kiee/KIEE.2024.73.7.1204/au2.png

He received his B.S, M.S., and Ph.D. degrees from InhaUniversity, Incheon, South Korea in 2012, 2014, and 2019, respectively. In 2019, he joined the Agency for Defense Development (ADD), Daejeon, South Korea, where he is currently a Senior Researcher. His current research interests include numerical and analytical methods for electromagnetic fields.

์ด์žฌํ˜ธ (Jae-Ho Lee)
../../Resources/kiee/KIEE.2024.73.7.1204/au3.png

He received the B.S. degree in electronic and electrical engineering from Kyungpook National University, Daegu, Korea, in 2002, and the M.S. degree in electrical and electronic engineering from Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea, in 2004. He was also awarded his Ph.D. degree in electrical and electronic engineering from Tokyo Institute of Technology (TIT), Tokyo, Japan, in 2010. He is currently an Assistant Professor with the Dept. of Electronics Engineering at Kunsan National University, Kunsan, South Korea.

์„œ๋™์šฑ (Dong-Wook Seo)
../../Resources/kiee/KIEE.2024.73.7.1204/au4.png

He received the B.S. degree in electrical engineering from Kyungpook National University (KNU), Daegu, South Korea, in 2003, and the M.S. and Ph.D. degrees in electrical engineering from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea, in 2005 and 2011, respectively.

He is currently a Professor with the Division of Electronics and Electrical Information Engineering at National Korea Maritime and Ocean University (KMOU), Busan, South Korea.