KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2018-09
(Vol.67 No.09)
10.5370/kiee.2018.67.9.1224
Journal XML
XML
PDF
INFO
REF
References
1
Levi G., Hassner T., 2015, Age and gender classification using convolutional neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 34-42
2
Chao W. L., Liu J. Z., Ding J. J., 2013, Facial age estimation based on label-sensitive learning and age- oriented regression, Pattern Recognition, Vol. 46, pp. 628-641
3
Eidinger E., Enbar R., Hassner T., 2014, Age and gender estimation of unfiltered faces, IEEE Transactions on Information Forensics and Security, Vol. 9, pp. 2170-2179
4
Hosseini S., Lee S. H., Kwon H. J., Koo H. I., Cho N. I., 2018, Age and gender classification using wide convolutional neural network and Gabor filter, in International Workshop on Advanced Image Technology 2018 (IWAIT 2018)
5
He Y., Huang M., Miao Q., Guo H., Wang J., 2017, Deep embedding network for robust age estimation, in 2017 IEEE International Conference on Image Processing (ICIP), pp. 1092-1096
6
Hu Z., Wen Y., Wang J., Wang M., Hong R., Yan S., 2017, Facial age estimation with age difference, IEEE Transactions on Image Processing, Vol. 26, pp. 3087-3097
7
Kwon Y. H., 1994, Age classification from facial images, in Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94, 1994 IEEE Computer Society Conference on, Vol. 권, No. 호, pp. 762-767
8
Geng X., Zhou Z. H., Zhang Y., Li G., Dai H., 2006, Learning from facial aging patterns for automatic age estimation, in Proceedings of the 14th ACM inter- national conference on Multimedia, pp. 307-316
9
Lanitis A., Cootes T., 2002, Fg-net aging data base, Cyprus College, Vol. 2, No. 5
10
Guo G., Fu Y., Dyer C. R., Huang T. S., 2008, Image- based human age estimation by manifold learning and locally adjusted robust regression, IEEE Transactions on Image Processing, Vol. 17, pp. 1178-1188
11
Guo G., Mu G., Fu Y., Huang T. S., 2009, Human age estimation using bio-inspired features, in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 112-119
12
Xiao B., Yang X., Zha H., Xu Y., Huang T. S., 2009, Metric learning for regression problems and human age estimation, in Pacific-Rim Conference on Multimedia, pp. 88-99
13
Viola P., Jones M. J., 2004, Robust real-time face detection, International Journal of Computer Vision, Vol. 57, pp. 137-154
14
Bolortuya S. E., Kim M. J., Cho H. C., 2016, A study of automatic face detection system for side-view face images, in Information and Control Symposium, pp. 117-118
15
Viola P., Jones M., 2001, Rapid object detection using a boosted cascade of simple features, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. I-I
16
Ng Y. S., Tai H. T., 2006, Edge enhancement of gray level images, US Patent No. US7079287B1
17
Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A., 2015, Going deeper with convolutions, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
18
Refaeilzadeh P., Tang L., Liu H., 2009, Cross-validation, in Encyclopedia of Database Systems, Springer, pp. 532-538
19
Krizhevsky A., Sutskever I., Hinton G. E., 2012, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems, pp. 1097-1105
20
Wolf L., Hassner T., Taigman Y., 2008, Descriptor based methods in the wild, in Workshop on Faces in 'Real- Life' Images: Detection, Alignment, and Recognition