• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Shen S., Michael N., Kumar V., 2015, Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs, Proc. - IEEE Int. Conf. Robot. Autom., Vol. 2015-June, No. June, pp. 5303-5310DOI
2 
Weiss S., Siegwart R., 2011, Real-time metric state estimation for modular vision-inertial systems, Proc. - IEEE Int. Conf. Robot. Autom., pp. 4531-4537DOI
3 
Huang G., Kaess M., Leonard J. J., 2014, Towards consistent visual-inertial navigation, in Proceedings - IEEE International Conference on Robotics and Automation, pp. 4926-4933DOI
4 
Leutenegger S., Lynen S., Bosse M., Siegwart R., Furgale P., Mar. 2015, Keyframe-based visual-inertial odometry using nonlinear optimization, Int. J. Rob. Res., Vol. 34, No. 3, pp. 314-334DOI
5 
Mur-Artal R., Tardos J. D., Oct. 2017, ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras, IEEE Trans. Robot., Vol. 33, No. 5, pp. 1255-1262DOI
6 
Qin T., Li P., Shen S., 2017, VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator, IEEE Trans. Robot., Vol. 34, No. 4, pp. 1004-1020DOI
7 
Schneider T. et al., 2017, maplab: An Open Framework for Research in Visual-inertial Mapping and Localization, Vol. 3, No. 3, pp. 1418-1425DOI
8 
Mei C., Sibley G., Newman P., 2010, Closing loops without places, in IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, pp. 3738-3744DOI
9 
Kümmerle R., Grisetti G., Strasdat H., Konolige K., Burgard W., 2011, G2o: A general framework for graph optimization, Proc. - IEEE Int. Conf. Robot. Autom., pp. 3607-3613DOI
10 
Schmid K., Hirschmuller H., 2013, Stereo vision and IMU based real-time ego-motion and depth image computation on a handheld device, in Proceedings - IEEE International Conference on Robotics and Automation, pp. 4671-4678Google Search
11 
Lee B., Yun S., Lee H. K., Lee Y. J., Sung S., 2016, An efficient attitude reference system design using velocity differential vectors under weak acceleration dynamics, Int. J. Aeronaut. Sp. Sci., Vol. 17, No. 2, pp. 222-231DOI
12 
Lee B., Lee Y. J., Sung S., Jun. 2018, Attitude Determination Algorithm based on Relative Quaternion Geometry of Velocity Incremental Vectors for Cost Efficient AHRS Design, Int. J. Aeronaut. Sp. Sci., Vol. 19, No. 2, pp. 459-469DOI
13 
Burri M. et al., 2016, The EuRoC micro aerial vehicle datasets, Int. J. Rob. Res., Vol. 35, No. 10, pp. 1157-1163DOI
14 
Bailey T., Durrant-Whyte H., 2006, Simultaneous localization and mapping (SLAM): Part IDOI
15 
Mourikis A. I., Roumeliotis S. I., 2007, A multi-state constraint Kalman filter for vision-aided inertial navigation, in Proceedings - IEEE International Conference on Robotics and Automation, pp. 3565-3572DOI
16 
Kelly J., Sukhatme G. S., 2011, Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor Self-calibration, Int. J. Rob. Res., Vol. 30, No. 1, pp. 56-79DOI
17 
Li M., Mourikis A. I., 2012, Improving the accuracy of EKF-based visual-inertial odometry, in Proceedings - IEEE International Conference on Robotics and Automation, pp. 828-835DOI
18 
Li M., Mourikis A. I., May 2013, High-precision, consistent EKF-based visual-inertial odometry, Int. J. Rob. Res., Vol. 32, No. 6, pp. 690-711DOI
19 
Tanskanen P., Naegeli T., Pollefeys M., Hilliges O., 2015, Semi-direct EKF-based monocular visual-inertial odometry, in IEEE International Conference on Intelligent Robots and Systems, Vol. 2015-Decem, pp. 6073-6078DOI
20 
Bloesch M., Omari S., Hutter M., Siegwart R., 2015, Robust visual inertial odometry using a direct EKF- based approach, in IEEE International Conference on Intelligent Robots and Systems, Vol. 2015-Decem, pp. 298-304DOI
21 
Bloesch M., Burri M., Omari S., Hutter M., Siegwart R., 2017, Iterated extended Kalman filter based visual- inertial odometry using direct photometric feedback, Int. J. Rob. Res., Vol. 36, No. 10, pp. 1053-1072DOI
22 
Sun K. et al., 2017, Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight, Vol. 3, No. 2, pp. 965-972DOI
23 
Lynen S., Achtelik M. W., Weiss S., Chli M., Siegwart R., 2013, A robust and modular multi-sensor fusion approach applied to MAV navigation, in IEEE International Conference on Intelligent Robots and Systems, pp. 3923-3929DOI
24 
Shen S., Mulgaonkar Y., Michael N., Kumar V., 2014, Multi-sensor fusion for robust autonomous flight in indoor and outdoor environments with a rotorcraft MAV, in Proceedings - IEEE International Conference on Robotics and Automation, pp. 4974-4981DOI
25 
Mur-Artal R., Montiel J. M. M., Tardos J. D., 2015, ORB-SLAM: A Versatile and Accurate Monocular SLAM System, IEEE Trans. Robot., Vol. 31, No. 5, pp. 1147-1163DOI
26 
Rublee E., Rabaud V., Konolige K., Bradski G., 2011, ORB: An efficient alternative to SIFT or SURF, in Proceedings of the IEEE International Conference on Computer Vision, pp. 2564-2571DOI
27 
Lowe D. G., Nov. 2004, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., Vol. 60, No. 2, pp. 91-110DOI
28 
Sturm J., Engelhard N., Endres F., Burgard W., Cremers D., 2012, A benchmark for the evaluation of RGB-D SLAM systems, IEEE Int. Conf. Intell. Robot. Syst., pp. 573-580DOI
29 
Ji P., 2016, StereoScan : Dense 3D Reconstruction in real-time, Ieeexplore.Ieee.Org, pp. 1-9Google Search
30 
Solin A., Cortés S., Rahtu E., Kannala J., 2018, PIVO: Probabilistic inertial-visual odometry for occlusion- robust navigation, Proc. - 2018 IEEE Winter Conf. Appl. Comput. Vision, WACV 2018, Vol. 2018-Janua, pp. 616-625DOI
31 
Mur-Artal R., Tardos J. D., Apr. 2016, Visual-Inertial Monocular SLAM with Map Reuse, IEEE Robot. Autom. Lett., Vol. 2, No. 2, pp. 796-803DOI
32 
Pire T., Fischer T., Civera J., De Cristoforis P., Berlles J. J., 2015, Stereo parallel tracking and mapping for robot localization, in IEEE International Conference on Intelligent Robots and Systems, Vol. 2015-Decem, pp. 1373-1378DOI
33 
Krombach N., Droeschel D., Behnke S., 2017, Combining feature-based and direct methods for semi-dense real-time stereo visual odometry, Adv. Intell. Syst. Comput., Vol. 531, No. July, pp. 855-868DOI