• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
N. Seegmiller, A. Kelly, Jun 2016, High-fidelity yet fast dynamic models of wheeled mobile robots, IEEE Transactions on Robotics, Vol. 32, No. 3, pp. 614-625DOI
2 
N. Sun, Y. Fang, H. Chen, B. Lu, Y. Fu, Oct 2016, Slew/translation positioning and swing suppression for 4-DOF tower cranes with parametric uncertainties: design and hardware experimentation, IEEE Transactions on Industrial Electronics, Vol. 63, No. 10, pp. 6407-6418DOI
3 
D. Chwa, Oct 2015, Fuzzy adaptive output feedback tracking control of VTOL aircraft with uncertain input coupling and input-dependent disturbances, IEEE Transactions on Fuzzy Sys- tems, Vol. 23, No. 5, pp. 1505-1518DOI
4 
S. Jeong, D. Chwa, May 2018, Coupled multiple sliding-mode control for robust trajectory tracking of hovercraft with external disturbances, IEEE Transactions on Industrial Elec- tronics, Vol. 65, No. 5, pp. 4103-4113DOI
5 
R. Ortega, M. W. Spong, F. Gómez-Estern, G. Blan- kenstein, Aug 2002, Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment, IEEE Transactions on Automatic Control, Vol. 47, No. 8, pp. 1218-1233DOI
6 
M. Eom, D. Chwa, Apr 2015, Robust swing-up and balancing control using a nonlinear disturbance observer for the pendubot system with dynamic friction, IEEE Transactions on Robotics, Vol. 31, No. 2, pp. 331-343DOI
7 
X. Z. Lai, J. H. She, S. X. Yang, M. Wu, Mar 2008, Control of acrobat based on non-smooth Lyapunov function and com-prehensive stability analysis, IET Control Theory & Appli-cations, Vol. 2, No. 3, pp. 181-191DOI
8 
Z. Zhu, Y. Xia, M. Fu, Oct 2011, Adaptive sliding mode control for attitude stabilization with actuator saturation, IEEE Transactions on Industrial Electronics, Vol. 58, No. 10, pp. 4898-4907DOI
9 
J. Tjønnås, T. A. Johansen, May 2010, Stabilization of automotive vehicles using active steering and adaptive brake control allocation, IEEE Transactions on Control Systems Tech-nology, Vol. 18, No. 3, pp. 545-558DOI
10 
D. Chwa, Man, Tracking control of differential-drive wheeled mobile robots using a backstepping-like feedback linearization, IEEE Transactions on Systems, Vol. , No. , pp. -DOI
11 
D. Chwa, Oct 2016, Robust distance-based tracking control of wheeled mobile robots using vision sensors in the presence of kine-matic disturbances, IEEE Transactions on Industrial Electronics, Vol. 63, No. 10, pp. 6172-6183DOI
12 
A. p. Aguiar, J. p. Hespanha, Aug 2007, Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty, IEEE Transactions on Auto-matic Control, Vol. 52, No. 8, pp. 1362-1379DOI
13 
N. Muškinja, B. Tovornik, Apr 2006, Swinging up and stabilization of a real inverted pendulum, IEEE Transactions on Industrial Electronics, Vol. 53, No. 2, pp. 631-639DOI
14 
K. Sakurama, S. Hara, K. Nakano, Jun 2007, Swing-up and stabilization control of a cart-pendulum system via energy control and controlled lagrangian methods, Electrical Engineering in Japan, Vol. 160, No. 4, pp. 24-31DOI
15 
J. Yi, N. Yubazaki, K. Hirota, Aug 2001, Upswing and stabilization control of inverted pendulum system based on the SIRMs dynamically connected fuzzy inference model, Fuzzy Sets and Systems, Vol. 122, No. 1, pp. 139-152DOI
16 
S. Yurkovich, M. Widjaja, Apr 1996, Fuzzy controller synthesis for an inverted pendulum system, Control Engineering Practice, Vol. 4, No. 4, pp. 455-469DOI
17 
T. Yamakawa, Sep 1989, Stabilization of an inverted pendulum by a high-speed fuzzy logic controller hardware system, Fuzzy Sets and Systems, Vol. 32, No. 2, pp. 161-180DOI
18 
Q. Wei, W. p. Dayawansa, W. S. Levine, Jun 1995, Nonlinear controller for an inverted pendulum having restricted travel, Automatica, Vol. 31, No. 6, pp. 841-850DOI
19 
X. Yang, X. Zheng, Sep 2018, Swing-up and stabilization control design for an underactuated rotary inverted pendulum system: theory and experiments, IEEE Transactions on Industrial Electronics, Vol. 65, No. 9, pp. 7229-7238DOI
20 
C. S. Chen, W. L. Chen, Apr 1998, Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system, IEEE Transactions on Industrial Electronics, Vol. 45, No. 2, pp. 297-306DOI
21 
M. S. Park, D. Chwa, Sep 2009, Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method, IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, pp. 3541-3555DOI
22 
S. Jung, S. S. Kim, Mar 2008, Control experiment of a wheel-driven mobile inverted pendulum using neural network, IEEE Transactions on Control Systems Technology, Vol. 16, No. 2, pp. 297-303DOI
23 
W. F. Xie, Jun 2007, Sliding-mode-observer-based adaptive control for servo actuator with friction, IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, pp. 1517-1527DOI
24 
W. H. Chen, Dec 2004, Disturbance observer based control for non-linear systems, IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 4, pp. 706-710DOI
25 
W. H. Chen, D. J. Balance, p. J. Gawthrop, and J. O’Reilly, Aug 2000, A nonlinear disturbance observer for robotic manipulators, IEEE Transactions on Industrial Electronics, Vol. 47, No. 4, pp. 932-938DOI
26 
I. Fantoni, R. Lozano, 2001, Non-linear Control for Under-actuated Mechanical Systems, New York: Springer-VerlagGoogle Search
27 
W. Sun, Y. X. Yuan, 2006, Optimization Theory and Methods, New York: Springer-VerlagGoogle Search