• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
A. Khaligh, O. C. Onar, , Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems, 2009.Google Search
2 
T. J. Kazmierski, S. Beeby, 2014, Energy Harvesting Systems, Springer, New YorkGoogle Search
3 
O. Brand, et al., 2015, Micro Energy Harvesting, John Wiley & SonsGoogle Search
4 
X. Gao, et al., 2012, Flow energy harvesting using piezoelectric cantilevers with cylindrical extension, IEEE Transactions on Industrial Electronics, Vol. 60, No. 3DOI
5 
Z. L. Wang, 2015, Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives, Faraday discussions, Vol. 176DOI
6 
Z. L. Wang, et al., 2015, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors, Energy & Environmental Science, Vol. 8, No. 8DOI
7 
M. Zhang, et al., 2015, A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application, Nano Energy, Vol. 13DOI
8 
Y. Yang, et al., 2012, Pyroelectric nanogenerators for harvesting thermoelectric energy, Nano letters, Vol. 12, No. 6DOI
9 
F. R. Fan, et al., 2016, Flexible nanogenerators for energy harvesting and self‐powered electronics, Advanced Materials, Vol. 28, No. 22DOI
10 
R. E. Rosensweig, 2013, RehydrodynamicsGoogle Search
11 
C. Scherer, et al., 2005, Ferrofluids: properties and applications, Brazilian Journal of Physics, Vol. 35, No. 3ADOI
12 
R. Taylor, et al., 2013, Small particles, big impacts: a review of the diverse applications of nanofluids, Journal of applied physics, Vol. 113, No. 1DOI
13 
A. Bibo, et al., 2012, Electromagnetic ferrofluid-based energy harvester, Physics Letters A, Vol. 376, No. 32DOI
14 
M. Zahn, 2001, Magnetic fluid and nanoparticle applications to nanotechnology, Journal of nanoparticle research, Vol. 3, No. 1DOI
15 
. H. Kim, et al., 2015, Power generation using magnetic nano- fluids in millimeter-sized channel with in-phase mode of magnetization, IEEE Transactions on Magnetics, Vol. 51, No. 11DOI
16 
H. R. Yun, et al., 2015, Ferrohydrodynamic energy harvesting based on air droplet movement, Nano Energy, Vol. 11DOI
17 
S. H. Kim, et al., 2017, Power Generation Properties of Flow Nanogenerator With Mixture of Magnetic Nanofluid and Bubbles in Circulating System, IEEE Transactions on Magnetics, Vol. 53, No. 11DOI
18 
D. Joo, et al., 2018, Numerical study on bubble behavior in magnetic nanofluid used for waste heat recovery power generation concept, International Journal of Energy Research, Vol. 42, No. 2DOI
19 
R. J. Deissler, et al., 2014, Dependence of Brownian and Néel relaxation times on magnetic field strength, Medical physics, Vol. 41, No. 1DOI
20 
D. Schmidt, et al., 2015, A phenomenological description of the mps signal using a model for the field dependence of the effective relaxation time, IEEE Transactions on Magnetics, Vol. 51, No. 2DOI
21 
A. Kolhatkar, et al., 2013, Tuning the magnetic properties of nanoparticles, International Journal of Molecular Sciences, Vol. 14, No. 8DOI
22 
J. D. Hankins, 1980, Thermosyphon heat exchanger,, United StatesGoogle Search
23 
S. I. Haider, et al., 2002, A natural circulation model of the closed loop, two-phase thermosyphon for electronics cooling, Journal of Heat Transfer, Vol. 124, No. 6, pp. -DOI
24 
H. M. S. Hussein, 2003, Optimization of a natural circulation two phase closed thermosyphon flat plate solar water heater, Energy Conversion and Management, Vol. 44, No. 14DOI
25 
G. Ghim, et al., 2017, Condensation heat transfer of low GWP ORC working fluids in a horizontal smooth tube, International Journal of Heat and Mass Transfer, No. 104DOI