KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2020-05
(Vol.69 No.5)
10.5370/KIEE.2020.69.5.688
Journal XML
XML
PDF
INFO
REF
References
1
James W. Taylor, Roberto Buizza, 2002, Neural network load forecasting with weather ensemble predictions, IEEE Trans. on Power Systems, Vol. 17, No. 3, pp. 626-632
2
D. Ali, M. Yohanna, M. I Puwu, B. M. Garkida, 2016, Long- term load forecast modelling using a fuzzy logic approach, Pacific Science Review A: Natural Science and Engineering, Vol. 18, pp. 123-127
3
M. Nakamura, 1984, Short Term Load Forecasting using Weekday Load Models and Bias Models, IFAC Proceedings Volumes, Vol. 17, pp. 2097-2102
4
G. Gross, F. D. Galiana, 1987, Short Term Load Forecasting, Proc. IEEE, Vol. 75, pp. 1558-1573
5
J. F. Chen, W. M. Wang, C. M. Huang, 1995, Analysis of and adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting, Electric Power Systems Research, Vol. 34, pp. 187-196
6
M. Tamimi, R. Egbert, 2000, Short term electric load forecast- ing via fuzzy neural collaboration, Electric Power Systems Research, Vol. 56, pp. 234-248
7
J. H. Puiar, 2010, Fuzzy Ideology based Long Term Load Fore- casting, World Academy of Science, Engineering and Technology, Vol. 40, pp. 640-645
8
E. B. UI, Islam, 2011, Comparison of Conventional and Modern Load Forecasting Techniques Based on Artificial Intelligence and Expert Systems, IJCSI, Vol. 8, pp. 504-513
9
B. J. Chen, M. W. Chang, C. J. Lin, 2004, Load forecast- ing using support vector machines: a study on EUNITE competition 2001, IEEE Trans. on Power Systems, Vol. 19, pp. 1821-1830
10
Y. R. Gahrooei, R. A. Hooshmand, 2019, Short Term Electricity Price Forecasting by Hybrid Mutual Information ANFIS- POS Approach, Computational Intelligence in Electrical Engineering, Vol. 10, pp. 63-72
11
M. Askari, F. Keynia, 2019, Mid-term electricity load fore- casting by a new composite method based on optimal learning MLP algorithm, IET Generation Transmission & Distribution, Vol. 14, pp. 845-852
12
A. Alshejari, V. S. Kodogiannis, S. Leonidis, 2020, Develop- ment of Neurofuzzy Architecture for Electricity Price Fore- casting, Energies, Vol. 13, pp. 1-25
13
Y. K. Bang, J. H. Kim, C. H. Lee, 2017, Daily Peak Electric Load Forecasting using Neural Network and Fuzzy system, The Transaction of the Korean Institute of Electrical Engineers, Vol. 67, pp. 96-102
14
M. Jafari, H. Molaei, 2014, Spherical Linear Interpolation and Bezier Curves, General Scientific Researchs, Vol. 2, pp. 13-17
15
Y. K. Bang, C. H. Lee, 2011, Fuzzy Time Series Prediction using Hierarchical Clustering Algorithms, Expert Systems with Applications, Vol. 38, pp. 4312-4325
16
J. M. Mendal, 2001, Uncertain Rule-based Fuzzy Logic System: Introduction and New Directions, Prentice-Hall, Upper Saddle River, NJ 07458
17
J. M. Mendal, 2004, Computing derivatives in interval type-2 fuzzy logic system, IEEE Trans. Fuzzy Syst, Vol. 12, pp. 84-98
18
Z. Cebeci, F. Yildiz, 2015, Comparison of K-Means and Fuzzy C-Means Algorithms on Different Cluster Structures, Journal of Agricultural Informatics, Vol. 6, pp. 13-23