• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
James W. Taylor, Roberto Buizza, 2002, Neural network load forecasting with weather ensemble predictions, IEEE Trans. on Power Systems, Vol. 17, No. 3, pp. 626-632DOI
2 
D. Ali, M. Yohanna, M. I Puwu, B. M. Garkida, 2016, Long- term load forecast modelling using a fuzzy logic approach, Pacific Science Review A: Natural Science and Engineering, Vol. 18, pp. 123-127DOI
3 
M. Nakamura, 1984, Short Term Load Forecasting using Weekday Load Models and Bias Models, IFAC Proceedings Volumes, Vol. 17, pp. 2097-2102DOI
4 
G. Gross, F. D. Galiana, 1987, Short Term Load Forecasting, Proc. IEEE, Vol. 75, pp. 1558-1573DOI
5 
J. F. Chen, W. M. Wang, C. M. Huang, 1995, Analysis of and adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting, Electric Power Systems Research, Vol. 34, pp. 187-196DOI
6 
M. Tamimi, R. Egbert, 2000, Short term electric load forecast- ing via fuzzy neural collaboration, Electric Power Systems Research, Vol. 56, pp. 234-248DOI
7 
J. H. Puiar, 2010, Fuzzy Ideology based Long Term Load Fore- casting, World Academy of Science, Engineering and Technology, Vol. 40, pp. 640-645Google Search
8 
E. B. UI, Islam, 2011, Comparison of Conventional and Modern Load Forecasting Techniques Based on Artificial Intelligence and Expert Systems, IJCSI, Vol. 8, pp. 504-513Google Search
9 
B. J. Chen, M. W. Chang, C. J. Lin, 2004, Load forecast- ing using support vector machines: a study on EUNITE competition 2001, IEEE Trans. on Power Systems, Vol. 19, pp. 1821-1830DOI
10 
Y. R. Gahrooei, R. A. Hooshmand, 2019, Short Term Electricity Price Forecasting by Hybrid Mutual Information ANFIS- POS Approach, Computational Intelligence in Electrical Engineering, Vol. 10, pp. 63-72Google Search
11 
M. Askari, F. Keynia, 2019, Mid-term electricity load fore- casting by a new composite method based on optimal learning MLP algorithm, IET Generation Transmission & Distribution, Vol. 14, pp. 845-852DOI
12 
A. Alshejari, V. S. Kodogiannis, S. Leonidis, 2020, Develop- ment of Neurofuzzy Architecture for Electricity Price Fore- casting, Energies, Vol. 13, pp. 1-25DOI
13 
Y. K. Bang, J. H. Kim, C. H. Lee, 2017, Daily Peak Electric Load Forecasting using Neural Network and Fuzzy system, The Transaction of the Korean Institute of Electrical Engineers, Vol. 67, pp. 96-102DOI
14 
M. Jafari, H. Molaei, 2014, Spherical Linear Interpolation and Bezier Curves, General Scientific Researchs, Vol. 2, pp. 13-17Google Search
15 
Y. K. Bang, C. H. Lee, 2011, Fuzzy Time Series Prediction using Hierarchical Clustering Algorithms, Expert Systems with Applications, Vol. 38, pp. 4312-4325DOI
16 
J. M. Mendal, 2001, Uncertain Rule-based Fuzzy Logic System: Introduction and New Directions, Prentice-Hall, Upper Saddle River, NJ 07458DOI
17 
J. M. Mendal, 2004, Computing derivatives in interval type-2 fuzzy logic system, IEEE Trans. Fuzzy Syst, Vol. 12, pp. 84-98DOI
18 
Z. Cebeci, F. Yildiz, 2015, Comparison of K-Means and Fuzzy C-Means Algorithms on Different Cluster Structures, Journal of Agricultural Informatics, Vol. 6, pp. 13-23Google Search