KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2020-06
(Vol.69 No.6)
10.5370/KIEE.2020.69.6.765
Journal XML
XML
PDF
INFO
REF
References
1
Ministry of Trade, Industry and Energy, Jun. 2015, The Standard of Reliability and Maintenance on Electrical Power System
2
R. Park, K. Song, Apr 2018, A Study on the Summer Peak Load Forecasting Based on Average Temperature, Journal of KIIEIE, Vol. 32, No. 4, pp. 24-31
3
H. Jeong, J. Jung, B, Kang, Oct 2018, Development of ARIMA- based Forecasting Algorithms using Meteorological Indices for Seasonal Peak Load, The Transactions of KIEE, Vol. 67, No. 10, pp. 1257-1264
4
K. Hwang, K. Kim, S. Kim, Apr 1999, Development of a Weekly Load Forecasting Expert System, The Transactions of KIEE, Vol. 48a, No. 4, pp. 365-370
5
L. F. Amaral, R. C. Souza, M. Stevenson, Oct 2008, A smooth transition periodic autoregressive(STPAR) model for short-term load forecasting, International Journal of Forecasting, Vol. 24, No. 4, pp. 603-615
6
C. Hor, S. J. Watson, S. Majithia, Nov 2005, Analyzing the Impact of Weather Variables on Monthly Electricity Demand, IEEE Transactions on Power Systems, Vol. 20, No. 4, pp. 2078-2085
7
J. V. Ringwood, D. Bofelli, F. T. Murray, May 2001, Forecasting Electricity Demand on Short, Medium and Long Time Scales Using Neural Networks, Journal of Intelligent and Robotic Systems, Vol. 31, No. 1, pp. 129-147
8
S. Kim, H. Jung, J. Park, S. Baek, W. Kim, K. Chon, K. Song, Jan 2014, Weekly Maximum Electric Load Forecasting for 104 Weeks by Seasonal ARIMA Model, Journal of KIIEIE, Vol. 28, No. 1, pp. 50-56
9
H. Jung, S. Kim, K. Song, Sep 2014, Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Mulitple Regression Models, The Transactions of KIEE, Vol. 63, No. 9, pp. 1186-1191
10
B. Kwon, R. Park, K. Song, Dec 2019, Weekly Peak Load Forecasting for 104 Weeks Using Deep Learning Algorithm, in Proceedings of APPEEC2019, Macau, China
11
Korea Meteorological Administration, Apr. 2020, http://www.weather.go.kr/,
12
KDI, Nov 2019, KDI ECONOMIC OUTLOOK, Vol. 36, No. 2
13
Korea Power Exchange, http://www.kpx.or.kr/, Apr. 2020
14
Korea Meteorological Administration, Apr. 2020, http://data.kma.go.kr/
15
J. Lim, S. Kim, J. Park, K. Song, Feb 2013, Representative Temperature Assessment for Improvement of Short-Term Load Fore- casting Accuracy, Journal of KIIEIE, Vol. vol 27, No. 6, pp. 39-43
16
Korean Statistical Information Service, GDP and GNI by Economic Activity, Apr. 2020
17
Korean Statistical Information Service, Indices of All Industry Product, Apr. 2020
18
B. Kwon, R. Park, S. Jo, K. Song, 2018, Analysis on Short-Term Load Forecasting Using Artificial Neural Network Algorithm According to Normalization and Selection of Input Data on Weekdays, in Proceedings of 2018 IEEE PES APPEEC