• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Ministry of Trade, Industry and Energy, Jun. 2015, The Standard of Reliability and Maintenance on Electrical Power SystemGoogle Search
2 
R. Park, K. Song, Apr 2018, A Study on the Summer Peak Load Forecasting Based on Average Temperature, Journal of KIIEIE, Vol. 32, No. 4, pp. 24-31Google Search
3 
H. Jeong, J. Jung, B, Kang, Oct 2018, Development of ARIMA- based Forecasting Algorithms using Meteorological Indices for Seasonal Peak Load, The Transactions of KIEE, Vol. 67, No. 10, pp. 1257-1264DOI
4 
K. Hwang, K. Kim, S. Kim, Apr 1999, Development of a Weekly Load Forecasting Expert System, The Transactions of KIEE, Vol. 48a, No. 4, pp. 365-370Google Search
5 
L. F. Amaral, R. C. Souza, M. Stevenson, Oct 2008, A smooth transition periodic autoregressive(STPAR) model for short-term load forecasting, International Journal of Forecasting, Vol. 24, No. 4, pp. 603-615DOI
6 
C. Hor, S. J. Watson, S. Majithia, Nov 2005, Analyzing the Impact of Weather Variables on Monthly Electricity Demand, IEEE Transactions on Power Systems, Vol. 20, No. 4, pp. 2078-2085DOI
7 
J. V. Ringwood, D. Bofelli, F. T. Murray, May 2001, Forecasting Electricity Demand on Short, Medium and Long Time Scales Using Neural Networks, Journal of Intelligent and Robotic Systems, Vol. 31, No. 1, pp. 129-147DOI
8 
S. Kim, H. Jung, J. Park, S. Baek, W. Kim, K. Chon, K. Song, Jan 2014, Weekly Maximum Electric Load Forecasting for 104 Weeks by Seasonal ARIMA Model, Journal of KIIEIE, Vol. 28, No. 1, pp. 50-56DOI
9 
H. Jung, S. Kim, K. Song, Sep 2014, Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Mulitple Regression Models, The Transactions of KIEE, Vol. 63, No. 9, pp. 1186-1191DOI
10 
B. Kwon, R. Park, K. Song, Dec 2019, Weekly Peak Load Forecasting for 104 Weeks Using Deep Learning Algorithm, in Proceedings of APPEEC2019, Macau, ChinaDOI
11 
Korea Meteorological Administration, Apr. 2020, http://www.weather.go.kr/,Google Search
12 
KDI, Nov 2019, KDI ECONOMIC OUTLOOK, Vol. 36, No. 2Google Search
13 
Korea Power Exchange, http://www.kpx.or.kr/, Apr. 2020Google Search
14 
Korea Meteorological Administration, Apr. 2020, http://data.kma.go.kr/Google Search
15 
J. Lim, S. Kim, J. Park, K. Song, Feb 2013, Representative Temperature Assessment for Improvement of Short-Term Load Fore- casting Accuracy, Journal of KIIEIE, Vol. vol 27, No. 6, pp. 39-43DOI
16 
Korean Statistical Information Service, GDP and GNI by Economic Activity, Apr. 2020
17 
Korean Statistical Information Service, Indices of All Industry Product, Apr. 2020
18 
B. Kwon, R. Park, S. Jo, K. Song, 2018, Analysis on Short-Term Load Forecasting Using Artificial Neural Network Algorithm According to Normalization and Selection of Input Data on Weekdays, in Proceedings of 2018 IEEE PES APPEECDOI