KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2020-06
(Vol.69 No.6)
10.5370/KIEE.2020.69.6.783
Journal XML
XML
PDF
INFO
REF
References
1
X. Wang, Y. Yu, L. Lin, 2020, Tweeting the United Nations Climate Change Conference in Paris (COP21): An analysis of a social network and factors determining the network influence, Online Social Networks and Media, Vol. 15
2
H. T. Kim, S. S. Jhang, 2018, Key Technologies for Stabilization of Power System for Successful Achievement of 3020 Renewable Energy Policy, KIEE, Vol. 67, No. 2, pp. 144-157
3
C. Zhang, X. Zhao, M. Shahidehpour, W. Li, L. Wen, Z. Yang, Feb 2020, Reliability Assessment of Coordinated Urban Transportation and Power Distribution Systems Considering the Impact of Charging Lots, IEEE, Vol. 8, pp. 30536-30547
4
V. Khare, S. Nema, May 2019, Reliability analysis of hybrid renewable energy system by fault tree analysis, Energy & Environmental, Vol. 30, pp. 542-555
5
K. H. Kim, R. J. Park, S. W. Jo, K. B. Song, 2017, 24-Hour Load Forecasting Algorithm Using Artificial Neural Network in Summer Wekdays, Journal of the Korean Instiute of Iluminating and Electrical Instalation Enginers, Vol. 31, No. 12, pp. 13-19
6
S. Y. Park, J. H. Bang, I. H. Ryu, T. H. Kim, 2019, The Prediction of Photovoltaic Power Using Regression Models Based on Weather Big-data and Sensing Data, KIEE, Vol. 68, No. 12, pp. 1662-1668
7
N. Sharma, P. Sharma, D. Irwin, P. Shenoy, 2011, Predicting Solar Generation from Weather Forecasts Using Machine Learning, in Proc. of 2011 IEEE International Conference on Smart Grid Communications (Smart-GridComm), IEEE, pp. 528-533
8
J. Han, J. Baek, 2010, The Load Forecasting in Summer Considering Day Factor, The Transactions of KAIS, Vol. 1, No. 8, pp. 2793-280
9
D. Kim, H. J. Jo, M. S. Kim, J. H. Roh, J. B. Park, 2019, Short-Term Load Forecasting Based on Deep Learning Model, KIEE, Vol. vol 68, No. 9, pp. 1094-1099
10
H. S. Tak, T. Y. Kim, H. G. Cho, H. J. Kim, Nov 2016, A New Prediction Model for Power Consumption with Local Weather Information, Journal of The Korea Contents Association, Vol. 16, No. 11, pp. 488-498
11
K. H. Jo, M. K. Kim, Mar 2018, Stochastic Unit Commitment Based on Multi-Scenario Tree Method Considering Uncertainty, Energies, Vol. 11, No. 740
12
I. N. Silva, D. H. Spatti, R. A. Flauzino, 2017, Artificial Neural Networks, Springer
13
K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, J. Schmidhuber, Jul 2016, LSTM: A Search Space Odyssey, IEEE, Vol. 28, No. 10
14
S. Youli, K. Nagasaka, Jan 2010, Monte Carlo Simulation Method Used in Reliability Evaluation of a Laboratory- based Micro Grid, IEEE
15
K. Krishna, M. N. Murty, Jun 1999, Genetic K-means algorithm, IEEE, Vol. 29, No. 3
16
D. N. Trakas, N. D. Hatziargyriou, M. Panteli, P. Mancarella, Feb 2017, A severity risk index for high impact low probability events in transmission systems due to extreme weather, IEEE