• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de-Pison, F. Antonanzas-Torres, 2016, Review of Photovolt Power Forecast, Sol. Energy, Vol. 136, pp. 78-111DOI
2 
E. Lorenz, J. Remund, S. C. Müller, W. Traunmüller, G. Steinmaurer, D. Pozo, J. A. Ruiz-Arias, V. L. Fanego, L. Ramirez, M. G. Romeo, September 2009, Benchmarking of Different Approaches to Forecast Solar Irradiance, others. In Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, pp. 21-25Google Search
3 
Bella Espinar, Jos´e-Luis Aznarte, Robin Girard, Alfred Mbairadjim Moussa, Georges Karinio-takis, Apr 2010, Photovoltaic Forecasting: A state of the art, 5th European PV-Hybrid and Mini-GridConference, pp. 250-255Google Search
4 
A. Moreno-Munoz, J. J. G. De la Rosa, R. Posadillo, F. Bellido , 11-16 May 2008, Very short term forecasting of solar radiation, In Proceedings of the 33rd IEEE Photovoltaic Specialists Conference 2008 PVSC 08, San Diego, CA , USADOI
5 
Maïmouna Diagne Hadja, Lauret Philippe, May 2012, Solar irradiation forecasting: state-ofthe-art and proposition for future developments for small-scale insular grids, WREF 2012 - World Renewable Energy ForumGoogle Search
6 
D. Heinemann, E. Lorenz, B. Lückehe, 1999, Short-term fore- casting of solar radiation: A statistical approach using satellite data, Sol. Energy, Vol. 67, pp. 139-150DOI
7 
S. Kalogirou, 2001, Artificial neural networks in renewable energy systems applications: A review, Renew. Sustain. Energy Rev, Vol. 5, pp. 373-401DOI
8 
T. C. Hugo, P. Carlos, F. M. Coimbra, July 2012, Assessment of Forecasting Techniques for Solar Power Production with no Exogenous Inputs, Solar Energy, Vol. 86, No. 7, pp. 2017-2028DOI
9 
G. Joao, F. da Silva , O. Jr. Takashi , T. Takumi, K. Gentarou, U. Yoshihisa, O. Kazuhiko, July 2011, Use of Support Vector Regression and Numerically Predicted Cloudiness to Forecast Power Output of a Photovoltaic Power Plant in Kitakyushu, JapanDOI
10 
L. I. Guangye, 2017, Short-term electricity load forecasting based on the xgboost algorithm, Smart Grid, Vol. 7, pp. 274-285DOI
11 
P. Li, J. -S. Zhang, 2018, A new hybrid method for China’s energy supply security forecasting based on arima and xgboost, Energies, Vol. 11, pp. 1687DOI
12 
Y. Xiao, J. Wu, Z. Lin, X. Zhao, 2018, A deep learning- based multi-model ensemble method for cancer prediction, Comput. Methods Programs Biomed, Vol. 153, pp. 1-9DOI
13 
J. Xiao, Y. Li, L. Xie, D. Liu, J. Huang, 2018, A hybrid model based on selective ensemble for energy consumption forecasting in China, Energy, Vol. 159, pp. 534-546DOI
14 
M. C. Torre, P. Poggi, A. Louche, 2001, Markovian model for studying wind speed time series in corsica, Int. J. Renew. Energy Eng, Vol. 3, pp. 311-319Google Search
15 
JR QUINLAN, 1986, Induction of decision trees - Machine Learning (Theory)Google Search
16 
L. Breiman, 1996, Bagging predictors, Mach. Learn, Vol. 24, pp. 123-140Google Search
17 
Chen Tianqi, Guestrin Carlos, 10 Jun 2016, XGBoost: A Scalable Tree Boosting SystemDOI
18 
H. Zhou, Z. Deng, Y. Xia, M. Fu, 2016, A new sampling method in particle filter based on pearson correlation coefficient, Neurocomputing, Vol. 216, pp. 208-215DOI