KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2020-07
(Vol.69 No.7)
10.5370/KIEE.2020.69.7.1102
Journal XML
XML
PDF
INFO
REF
References
1
H. G. Jeon, J. M. Sim, K. C. Lee, 2015, An empirical analysis of effects of depression on suicidal ideation of Korean adults: emphasis on 2008~2012 KNHANES dataset, The Journal of the Korea Contents Association, Vol. 15, No. 7, pp. 264-281
2
K. Kroenke, R. L. Spitzer, J. B. Williams, 2001, The PHQ‐9: validity of a brief depression severity measure, Journal of general internal medicine, Vol. 16, No. 9, pp. 606-613
3
S. J. Park, H. R. Choi, J. H. Choi, K. W. Kim, J. P. Hong, 2010, Reliability and validity of the Korean version of the Patient Health Questionnaire-9 (PHQ-9), Anxiety and mood, Vol. 6, No. 2, pp. 119-124
4
P. Y. Simard, D. Steinkraus, J. C. Platt, 2003, Best practices for convolutional neural networks applied to visual document analysis, Icdar, Vol. 3, No. 2003
5
E. Medina, M. R. Petraglia, J. G. R. Gomes, A. Petraglia, 2017, Comparison of CNN and MLP classifiers for algae detection in underwater pipelines, in 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, pp. 1-6
6
Y. Zhu, Y. Shang, Z. Shao, G. Guo, 2017, Automated depression diagnosis based on deep networks to encode facial appearance and dynamics, IEEE Transactions on Affective Computing, Vol. 9, No. 4, pp. 578-584
7
U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, H. Adeli, D. P. Subha, 2018, Automated EEG-based screening of depression using deep convolutional neural network, Computer methods and programs in biomedicine, Vol. 161, pp. 103-113
8
M. J. Ji, H. H. Park, 2018, Prediction of Serious Depressive Symptoms by Blood Test and Environmental Factor in Adult Men and Women, The Journal of Korean Institute of Communications and Information Sciences, Vol. 43, No. 8, pp. 1368-1377
9
S. K. Cho, S. Koo, K. Park, 2014, Vitamin D and depression, Journal of the Korean Society of Food Science and Nutrition, Vol. 43, No. 10, pp. 1467-1476
10
V. Ganji, C. Milone, M. M. Cody, F. McCarty, Y. T. Wang, 2010, Serum vitamin D concentrations are related to depression in young adult US population: the Third National Health and Nutrition Examination Survey, International Archives of Medicine, Vol. 3, No. 1, pp. 29
11
R. B. Kim, K. S. Park, J. H. Lee, B. J. Kim, J. H. Chun, 2011, Factors related to depression symptom and the influence of depression symptom on self-rated health status, outpatient health service utilization and quality of life, Korean Journal of Health Education and Promotion, Vol. 28, No. 1, pp. 81-92
12
B. G. Kwag, J. C. Park, W. Lee, S. H. Chang, D. H. Chun, 2018, The relationship between depression and health-related quality of life in Korean adult: Using 2014 Korea national health and nutrition examination survey data, Korean Journal of Family Practice, Vol. 8, No. 2, pp. 236-243
13
H. S. Lee, 2018, Depression and related risk factors in the elderly with a focused on health habits, mental health, chronic diseases, and nutrient intake status: data from the 2014 Korea National Health and Nutrition Examination Survey, Journal of the Korean Dietetic Association, Vol. 24, No. 2, pp. 169
14
N. G. Choi, M. Teeters, L. Perez, B. Farar, D. Thompson, 2010, Severity and correlates of depressive symptoms among recipients of Meals on Wheels: Age, gender, and racial/ethnic difference, Aging and Mental Health, Vol. 14, No. 2, pp. 145-154
15
G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, T. Y. Liu, 2017, Lightgbm: A highly efficient gradient boosting decision tree, Advances in neural information processing systems, pp. 3146-3154
16
E. Al Daoud, 2019, Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset, International Journal of Computer and Information Engineering, Vol. 13, No. 1, pp. 6-10
17
Y. Sun, A. K. Wong, M. S. Kamel, 2009, Classification of imbalanced data: A review, International journal of pattern recognition and artificial intelligence, Vol. 23, No. 4, pp. 687-719
18
X. Y. Liu, J. Wu, Z. H. Zhou, 2008, Exploratory undersampling for class-imbalance learning, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 39, No. 2, pp. 539-550
19
D. P. Kingma, J. Ba, 2014, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980
20
Y. Lei, X. Huo, B. Yan, 2018, Deep neural network for device modeling, 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM). IEEE, pp. 154-156
21
G. E. Dahl, T. N. Sainath, G. E. Hinton, 2013, Improving deep neural networks for LVCSR using rectified linear units and dropout, 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, Vol. speech and signal processing. ieee, No. , pp. 8609-8613
22
X. Glorot, Y. Bengio, 2010, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256
23
K. He, X. Zhang, S. Ren, J. Sun, 2015, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings of the IEEE international conference on computer vision, pp. 1026-1034
24
S. Loffe, C. Szegedy, 2015, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167
25
A. Anghel, N. Papandreou, T. Parnell, A. De Palma, H. Pozidis, 2018, Benchmarking and Optimization of Gradient Boosting Decision Tree Algorithms, arXiv preprint arXiv:1809.04559
26
N. Murata, S. Yoshizawa, S. I. Amari, 1993, Learning curves, model selection and complexity of neural networks, Advances in Neural Information Processing Systems, pp. 607-614
27
S. W. Song, 2009, Using the Receiver Operating Characteristic (ROC) Curve to Measure Sensitivity and Specificity, Korean Journal of Family Medicine, Vol. 30, No. 11, pp. 841-842