• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
H. G. Jeon, J. M. Sim, K. C. Lee, 2015, An empirical analysis of effects of depression on suicidal ideation of Korean adults: emphasis on 2008~2012 KNHANES dataset, The Journal of the Korea Contents Association, Vol. 15, No. 7, pp. 264-281DOI
2 
K. Kroenke, R. L. Spitzer, J. B. Williams, 2001, The PHQ‐9: validity of a brief depression severity measure, Journal of general internal medicine, Vol. 16, No. 9, pp. 606-613DOI
3 
S. J. Park, H. R. Choi, J. H. Choi, K. W. Kim, J. P. Hong, 2010, Reliability and validity of the Korean version of the Patient Health Questionnaire-9 (PHQ-9), Anxiety and mood, Vol. 6, No. 2, pp. 119-124Google Search
4 
P. Y. Simard, D. Steinkraus, J. C. Platt, 2003, Best practices for convolutional neural networks applied to visual document analysis, Icdar, Vol. 3, No. 2003Google Search
5 
E. Medina, M. R. Petraglia, J. G. R. Gomes, A. Petraglia, 2017, Comparison of CNN and MLP classifiers for algae detection in underwater pipelines, in 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, pp. 1-6DOI
6 
Y. Zhu, Y. Shang, Z. Shao, G. Guo, 2017, Automated depression diagnosis based on deep networks to encode facial appearance and dynamics, IEEE Transactions on Affective Computing, Vol. 9, No. 4, pp. 578-584DOI
7 
U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, H. Adeli, D. P. Subha, 2018, Automated EEG-based screening of depression using deep convolutional neural network, Computer methods and programs in biomedicine, Vol. 161, pp. 103-113DOI
8 
M. J. Ji, H. H. Park, 2018, Prediction of Serious Depressive Symptoms by Blood Test and Environmental Factor in Adult Men and Women, The Journal of Korean Institute of Communications and Information Sciences, Vol. 43, No. 8, pp. 1368-1377Google Search
9 
S. K. Cho, S. Koo, K. Park, 2014, Vitamin D and depression, Journal of the Korean Society of Food Science and Nutrition, Vol. 43, No. 10, pp. 1467-1476DOI
10 
V. Ganji, C. Milone, M. M. Cody, F. McCarty, Y. T. Wang, 2010, Serum vitamin D concentrations are related to depression in young adult US population: the Third National Health and Nutrition Examination Survey, International Archives of Medicine, Vol. 3, No. 1, pp. 29DOI
11 
R. B. Kim, K. S. Park, J. H. Lee, B. J. Kim, J. H. Chun, 2011, Factors related to depression symptom and the influence of depression symptom on self-rated health status, outpatient health service utilization and quality of life, Korean Journal of Health Education and Promotion, Vol. 28, No. 1, pp. 81-92Google Search
12 
B. G. Kwag, J. C. Park, W. Lee, S. H. Chang, D. H. Chun, 2018, The relationship between depression and health-related quality of life in Korean adult: Using 2014 Korea national health and nutrition examination survey data, Korean Journal of Family Practice, Vol. 8, No. 2, pp. 236-243DOI
13 
H. S. Lee, 2018, Depression and related risk factors in the elderly with a focused on health habits, mental health, chronic diseases, and nutrient intake status: data from the 2014 Korea National Health and Nutrition Examination Survey, Journal of the Korean Dietetic Association, Vol. 24, No. 2, pp. 169DOI
14 
N. G. Choi, M. Teeters, L. Perez, B. Farar, D. Thompson, 2010, Severity and correlates of depressive symptoms among recipients of Meals on Wheels: Age, gender, and racial/ethnic difference, Aging and Mental Health, Vol. 14, No. 2, pp. 145-154DOI
15 
G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, T. Y. Liu, 2017, Lightgbm: A highly efficient gradient boosting decision tree, Advances in neural information processing systems, pp. 3146-3154Google Search
16 
E. Al Daoud, 2019, Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset, International Journal of Computer and Information Engineering, Vol. 13, No. 1, pp. 6-10Google Search
17 
Y. Sun, A. K. Wong, M. S. Kamel, 2009, Classification of imbalanced data: A review, International journal of pattern recognition and artificial intelligence, Vol. 23, No. 4, pp. 687-719DOI
18 
X. Y. Liu, J. Wu, Z. H. Zhou, 2008, Exploratory undersampling for class-imbalance learning, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 39, No. 2, pp. 539-550DOI
19 
D. P. Kingma, J. Ba, 2014, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980Google Search
20 
Y. Lei, X. Huo, B. Yan, 2018, Deep neural network for device modeling, 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM). IEEE, pp. 154-156DOI
21 
G. E. Dahl, T. N. Sainath, G. E. Hinton, 2013, Improving deep neural networks for LVCSR using rectified linear units and dropout, 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, Vol. speech and signal processing. ieee, No. , pp. 8609-8613DOI
22 
X. Glorot, Y. Bengio, 2010, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp. 249-256Google Search
23 
K. He, X. Zhang, S. Ren, J. Sun, 2015, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings of the IEEE international conference on computer vision, pp. 1026-1034Google Search
24 
S. Loffe, C. Szegedy, 2015, Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167Google Search
25 
A. Anghel, N. Papandreou, T. Parnell, A. De Palma, H. Pozidis, 2018, Benchmarking and Optimization of Gradient Boosting Decision Tree Algorithms, arXiv preprint arXiv:1809.04559Google Search
26 
N. Murata, S. Yoshizawa, S. I. Amari, 1993, Learning curves, model selection and complexity of neural networks, Advances in Neural Information Processing Systems, pp. 607-614Google Search
27 
S. W. Song, 2009, Using the Receiver Operating Characteristic (ROC) Curve to Measure Sensitivity and Specificity, Korean Journal of Family Medicine, Vol. 30, No. 11, pp. 841-842Google Search