• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Sun-Gi Lee, 2005, A Case Study on the Easterly Wind Characteristics around Gangneung City, Journal of Atmosphere, Vol. 15, No. 4, pp. 191-202Google Search
2 
. G. Lee, J. S. Lee, 2003, A Numerical Study of Yeongdong Heavy Snowfall Events Associated with Easterly, Asia- Pacific Journal of Atmospheric Sciences, Vol. 39, No. 4, pp. 475-490Google Search
3 
Ziqi Cao, 2015, Interannual increase of regional haze-fog in North China Plain in summer by intensified easterly winds and orographic forcing, Atmospheric Environment, Vol. 122, pp. 154-162DOI
4 
K. Kim, K. Seo, 2018, Deep Learning Based Prediction for Easterly Wind, in Proceedings of Information and Control Symposium CICS’2018, pp. 55-56Google Search
5 
K. Kim, K. Seo, 2019, Deep Learning Based Prediction Model for Easterly Wind, Transactions of the Korean Institute of Electrical Engineers, Vol. 68, No. 12, pp. 1607-1611Google Search
6 
K. Kim, K. Seo, 2019, Long Short-Term Memory Based Prediction for Easterly Wind, in Proceedings of Information and Control Symposium ICS’2019, pp. 21-22Google Search
7 
Y. LeCun, Y. Bengio, G. Hinton, 2015, Deep learning, Nature, Vol. 521, pp. 436-444DOI
8 
A. Krizhevsky, I. Sutskever, G. Hinton, 2012, ImageNet classification with deep convolutional neural networks, in NIPSGoogle Search
9 
S. Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780DOI
10 
ECMWF ERA5, https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5Google Search