• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
R. Madhavan, 2018, Natural language processing current appli- cations and future possibilities, Tractica OmdiaGoogle Search
2 
A. Ittai, B. Yair, N. Ofer, Sep 2011, Advances in metric embedding theory, Advances in Mathematics, Vol. 228, pp. 3026-3126DOI
3 
Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, Feb 2003, A neural probabilistic language model, Journal of Machine Learning, Vol. 3, pp. 1137-1155Google Search
4 
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Dec 2013, Distributed representations of words and phrases and their compositionality, Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), Australia, Vol. 2, pp. 3111-3119Google Search
5 
T. Mikolov, K. Chen, G. Corrado, J. Dean, Jan 2013, Efficient estimation of word representations in vector space, Proceedings of the International Conference on Learning Representations (ICLR), USAGoogle Search
6 
A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, April 2017, Bag of tricks for efficient text classification, Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics Spain, Vol. 2, pp. 427-431Google Search
7 
S. T. Dumais, 2005, Latent semantic analysis, Annual Review of Information Science and Technology, Vol. 38, pp. 188-230DOI
8 
J. Pennington, R. Socher, C. D. Manning, Oct 2014, Glove: Global vectors for word representation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Qatar, pp. 1532-1543Google Search
9 
G. Salton, M. J. McGill, 1983, Introduction to Modern Inform- ation retrieval, McGraw-HillDOI
10 
J. A. Minarro-Gimenez, O. Marin-Alonso, M. Samwald, 2014, Exploring the application of deep learning techniques on medical text corpora, 2014 European Federation for Medical Informatics and IOS Press, pp. 584-588Google Search
11 
W. Husain, L. Y. Dih, July 2012, A framework of a personalized location-based traveler recommendation system in mobile application, International Journal of Multimedia and Ubiquitous Engineering, Vol. 7, pp. 11-18Google Search
12 
A. Gachet, Software frameworks for developing decision support systems – A new component in the classification of DSS development tools, Journal of Decision Systems, Vol. 12, No. 3, pp. 271-281DOI
13 
J. Bedi, D. Toshniwal, Jan 2019, Deep learning framework to forecast electricity demand, Applied Energy, Vol. 238, pp. 1312-1326DOI
14 
A. W. Dowling, R. Kumar, V. M. Zavala, Jan 2017, A multi- scale optimization framework for electricity market partici- pation, Applied Energy, Vol. 190, pp. 147-164DOI
15 
M. B. Pinheiro, C. A. Davis Jr, Jun 2018, ThemeRise: A theme- oriented framework for volunteered geographic information applications, Journal of Open Geospatial Data, Software and Standards, Vol. 1, pp. 3-9DOI
16 
C. R. Jack Jr, D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn, X. B. Haeberlein, D. M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, E. Lilu, J. L. Molinuevo, T. Montine, C. Phelps, K. P. Rankin, C. C. Rowe, P. Scheltens, E. Siemers, H. M. Snyder, R. Sperling, 2018, NIA-AA research framework: Toward a biological definition of Alzheimer’s disease, Alzheimers Dement, Vol. 14, pp. 535-562DOI
17 
E. L. Park, S. Cho, 2014, KoNLPy: Korean natural language processing in Python, Proceedings of the 26th Annual Conference on Human and Cognitive Language Technology, pp. 133-136Google Search
18 
R. Rehurek, P. Sojka, 2011, Gensim-Statistical semantics in Python, The 4th European Meeting on Python in ScienceGoogle Search