KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2021-01
(Vol.70 No.1)
10.5370/KIEE.2021.70.1.184
Journal XML
XML
PDF
INFO
REF
References
1
Korean Statistics Information Service, Crop Production Survey.
2
G. Dhingra, V. Kumar, H.D. Joshi, 2019, A novel computer vision based neutrosophic approach for leaf disease identifi- cation and classification, Measurement, Vol. 135, pp. 782-794
3
S. Zhang, S. Zhang, C. Zhang, X. Wang, Y. Shi, 2019, Cucumber leaf disease identification with global pooling dilated convolutional neural network, Computers and Elec- tronics in Agriculture, Vol. 162, pp. 422-430
4
V. Singh, A.K. Misra, 2017, Detection of plant leaf diseases using image segmentation and soft computing techniques, Information processing in Agriculture, Vol. 4, pp. 41-49
5
S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, D. Stefanovic, 2016, Deep neural networks based recognition of plant diseases by leaf image classification, Computational intelligence and neuroscience, Vol. 2016, pp. 11-22
6
AI Open Innovation Hub, http://www.aihub.or.kr/
7
K. P. Ferentinos, 2018, Deep learning models for plant disease detection and diagnosis, Computers and Electronics in Agriculture., Vol. 145, pp. 311-318
8
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevanm, Q. V. Le, 2019, Autoaugment: Learning augmentation policies from data, Conference on Computer Vision and Pattern Recognition(CVPR), pp. 113-123
9
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, 2014, Generative adversarial networks, Advances in Neural Information Processing Systems(NIPS), pp. 2672-2680
10
A. Radford, L. Metz, 2015, Unsupervised repre- sentation learning with deep convolutional generative adver- sarial networks, arXiv preprint arXiv:1511.06434.
11
A. Krizhevsky, I. Sutskever, G. E. Hinton, 2012, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems(NIPS)., pp. 1097-1105
12
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, 2016, Rethinking the inception architecture for computer vision, Conference on Computer Vision and Pattern Recognition(CVPR), pp. 2818-2826
13
M. Lin, Q. Chen, S. Yan, 2013, Network in network, arXiv: 1312.4400