• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Korean Statistics Information Service, Crop Production Survey.Google Search
2 
G. Dhingra, V. Kumar, H.D. Joshi, 2019, A novel computer vision based neutrosophic approach for leaf disease identifi- cation and classification, Measurement, Vol. 135, pp. 782-794DOI
3 
S. Zhang, S. Zhang, C. Zhang, X. Wang, Y. Shi, 2019, Cucumber leaf disease identification with global pooling dilated convolutional neural network, Computers and Elec- tronics in Agriculture, Vol. 162, pp. 422-430DOI
4 
V. Singh, A.K. Misra, 2017, Detection of plant leaf diseases using image segmentation and soft computing techniques, Information processing in Agriculture, Vol. 4, pp. 41-49DOI
5 
S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, D. Stefanovic, 2016, Deep neural networks based recognition of plant diseases by leaf image classification, Computational intelligence and neuroscience, Vol. 2016, pp. 11-22DOI
6 
AI Open Innovation Hub, http://www.aihub.or.kr/Google Search
7 
K. P. Ferentinos, 2018, Deep learning models for plant disease detection and diagnosis, Computers and Electronics in Agriculture., Vol. 145, pp. 311-318DOI
8 
E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevanm, Q. V. Le, 2019, Autoaugment: Learning augmentation policies from data, Conference on Computer Vision and Pattern Recognition(CVPR), pp. 113-123Google Search
9 
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, 2014, Generative adversarial networks, Advances in Neural Information Processing Systems(NIPS), pp. 2672-2680DOI
10 
A. Radford, L. Metz, 2015, Unsupervised repre- sentation learning with deep convolutional generative adver- sarial networks, arXiv preprint arXiv:1511.06434.Google Search
11 
A. Krizhevsky, I. Sutskever, G. E. Hinton, 2012, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems(NIPS)., pp. 1097-1105DOI
12 
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, 2016, Rethinking the inception architecture for computer vision, Conference on Computer Vision and Pattern Recognition(CVPR), pp. 2818-2826Google Search
13 
M. Lin, Q. Chen, S. Yan, 2013, Network in network, arXiv: 1312.4400Google Search