• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
2020, 2019 New & Renewable Energy Propagation Statistics, KOREA ENERGY AGENCYGoogle Search
2 
K. Kim, D. Shin, B. Ha, W. Hwang, July 2010, A study on construction and design of distribution intelligent system for the field test, Korean Institute of Electrical Engineers Conference, pp. 7-8Google Search
3 
S. Kwon, B. Kim, C. Chu, S. Yun, 2017, Development of State Estimator for Distribution Management Systems, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, pp. 37-49DOI
4 
Y. Kim, S. Park, M. Choi, K. Jang, B. Park, N. Jung, 2015, Development of Meter Reading Network Management System based on AMI, Korean Institute of Electrical Engineers ConferenceGoogle Search
5 
2013, The Procedure of Forecasting Distribution Line Peak, KEPCOGoogle Search
6 
T. Hong, Jan. 2015, Load Forecasting Case Study, Eastern Interconnection States’ Planning CouncilGoogle Search
7 
T. Anwar, B. Sharma, K. Chakraborty, H. Sirohia, 2018, Introduction to Load Forecasting, International Journal of Pure and Applied Mathematics, Vol. 119, No. 15, pp. 1527-1538Google Search
8 
M. A. Hammad, B. Jereb, B. Rosi, D. Dragan, 2020, Methods and models for electric load forecasting: A comprehensive review, Logist. Sustain. Transp., Vol. 11, No. 1, pp. 51-76Google Search
9 
P. S. P. Cowpertwait, A. V. Metcalfe, 2009, Introductory Time Series with R. Springer New YorkGoogle Search
10 
A. J. Wood, B. F. Wollenberg, B. F. Wollenberg, 2013, Power Generation, Operation, and Control, WileyGoogle Search
11 
M. Gaur, A. Majumdar, 2016, One-Day-Ahead Load Forecasting using nonlinear Kalman filtering algorithmsGoogle Search
12 
J. Cheng, W. Xiong, L. Ai, 2012, Electric Load Forecasting Based on Improved Grey Neural Network, in Recent advances in computer science and information engineering, Heidelberg: Springer, Vol. 124, pp. 651-655DOI
13 
C. Herui, B. Tao, L. Yanzi, 2013, Short-term Power Load Forecasting Based on Gray Theory, ELKOMNIKA Indonesian Journal of Electrical Engineering, Vol. 11, No. 11Google Search
14 
P. Ji, D. Xiong, P. Wang, J. Chen, A Study on Exponential Smoothing Model for Load Forecasting, 2012 Asia-Pacific Power and Energy Engineering Conference, Vol. 124, pp. 1-4DOI
15 
E. A. Olajuyin, 2018, Long Term Load Forecasting Using Artificial Neural Network, American Journal of Engineering Research, Vol. 7, No. 11, pp. 14-17Google Search
16 
S. Maldonado, A. Gonzalez, S. Crone, 2019, Automatic time series analysis for electric load forecasting via support vector regression, Applied Soft Computing 83DOI
17 
D. Ali, M. Yohanna, M. I. Puwu, B. M. Garkida, 2013, Long- term load forecast modelling using a fuzzy logic approach, Pacific Science Review A: Natural Science and Engineering, Vol. 18, No. 2, pp. 123-127DOI
18 
R. R. B. de Aquino, O. N. Neto, M. M. S. Lira, A. A. Ferreira, K. F. Santos, 2007, Using Genetic Algorithm to Develop a Neural-Network-Based Load Forecasting, in Artificial Neural Networks – ICANN 2007, Vol. berlin, No. heidelberg, pp. 738-747DOI
19 
Z. Hu, Y. Bao, 2013, Electricity load forecasting using support vector regression with memetic algorithms, The Scientific World JournalDOI
20 
M. Dong, 2019, A hybrid distribution feeder long- term load forecasting method based on sequence prediction, IEEE Transactions on Smart Grid, Vol. 11, No. 1, pp. 470-482DOI
21 
H. Eom, Y. Son, S. Choi, 2020, Feature-Selective Ensemble Learning- Based Long-Term Regional PV Generation Forecasting, in IEEE Access, Vol. 8, pp. 54620-54630DOI