• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
KEPCO, 2018, Technology of Distributed Energy Resource connection with distribution system: GuidelineGoogle Search
2 
Renewable Energy 3020 Implementation Plan, 2017, Ministry of Trade, Industry and EnergyGoogle Search
3 
R. J. Hyndman, G. Athanasopoulos, 2018, Forecasting: Principles and Practice, 2nd edition, OTextsGoogle Search
4 
M. N. Akhter, S. Mekhilef, H. Mokhlis, N. M. Shah, 2019, Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques, IET Renewable Power Generation, Vol. 13, No. 7, pp. 1009-1023Google Search
5 
U. K. Das, K. S. Tey, M. Seyedmahmoudian, S. Mekhilef, M.Y.I. Idris, W.V. Deventer, B. Horan, A. Stojcevski, 2018, Forecasting of photovoltaic power generation and model, optimization: A review. Renew. Sustain. Energy Rev., Vol. 81, pp. 912-928DOI
6 
MH Alsharif, MK Younes, J. Kim, 2019, Time Series ARIMA Model for Prediction of Daily and Monthly Average Global, Solar Radiation: The Case Study of Seoul, South Korea Symmetry, Vol. 11, pp. 240-257Google Search
7 
S.B. Boualit, A. Mellit, 14–17 November 2016, SARIMA-SVM hybrid model for the prediction of daily global solar radiation time series, In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC) IEEE, Marrakesh Morocco, pp. 712-717DOI
8 
Sahm Kim, 2017, A study on solar irradiance forecasting with weather variables, The Korean Journal of Applied StatisticsDOI
9 
B. Oryani, Y. Koo, S. Rezania, 2020, Structural Vector Autoregressive Approach to Evaluate the Impact of Electricity Generation Mix on Economic Growth and CO2 Emissions in Iran, Energies, Vol. 13, No. 4268DOI
10 
Y. Li, June 2014, An ARMAX model for forecasting the power output of a grid connected photovoltaic system, Renewable Energy, Vol. 66, pp. 78-89DOI
11 
S. Bae, 2018, Research Trends of Photovoltaic Generation Forecasting, KIEE: World of electric, Vol. 67, No. 12, pp. 16-25Google Search
12 
A. Almadhor, 2018, Performance prediction of distributed PV generation systems using Artificial Neural Networks (ANN) and Mesh Networks, International Conference on Smart Grid, Vol. nagasaki, No. japan, pp. 88-91DOI
13 
M. N. Rahman, A. Esmailpour, 2015, An Efficient Electricity Generation Forecasting System Using Artificial Neural Network Approach with Big Data, IEEE First International Conference on Big Data Computing Service and Applications, Redwood City, Vol. ca, pp. 213-217DOI
14 
Gwon-Yoon Lee, Sang-Boo Lee, 2018, Universal Prediction System Realization Using RNN, Journal of KII, Vol. 16, No. 10, pp. 11-20Google Search
15 
Juan Ospina, Newaz Alvi, Omar Faruque M., 2019, Forecasting of PV plant output using hybrid wavelet-based LSTM- DNN structure model, IET Renewable Power Generation, Vol. 13, No. 7, pp. 1087-1095Google Search
16 
S. Tomonobu, Y. Atsushi, U. Naomitsu, F. Toshihisa, 2006, Application of Recurrent Neural Network to Long-Term- Ahead Generating Power Forecasting for Wind Power Generator, IEEE Power Systems Conference and Exposition, pp. 1260-1265DOI
17 
Jungin Lee, 2019, Technology trends of Renewable energy generation forecasting based on ICT, The Journal of The Korean Institute of Communication Sciences, Vol. 36, No. 11, pp. 3-8Google Search
18 
K. W. Kim, G. S. Jang, S. M. Lim, I. K. Ahn, J. Park, H. C. Oh, 2020, GRU-based Activity Recognition from Early-stage Motion, The Institute of Electronics and Information Engineers, pp. 2016-2019Google Search
19 
Yong-jin Jung, Kyoung-woo Cho, Jong-sung Lee, Chang-heon Oh, 2019, Particulate Matter (PM10) Concentration Prediction Model using GRU, The Korea Institute of Information and Communication Engineering, Vol. 23, No. 2, pp. 644-646Google Search
20 
W. Li, T. Logenthiran, W. L. Woo, 2019, Multi-GRU prediction system for electricity generation's planning and operation, in IET Generation, Transmission & Distribution, Vol. 13, No. 9, pp. 1630-1637Google Search
21 
Ju-Hwan Ham, Sung-Yul Kim, 2020, A Study on the Comparison of Kernel Functions Appropriate to the SVR-based Power Demand Prediction Algorithms, The Korean Institute of Electrical Engineers, Vol. workshop, pp. 158-159Google Search
22 
Gwon-Sun Mun, 1997, Understaing of VAR model, KOSTAT, Vol. research of statistics analysis, No. , pp. 23-56Google Search
23 
Jae Hyun Yoo, 1997, Gaussian Process Model based Reinforcement Learning, Journal of Institute of Control, Robotics and Systems, Vol. 25, No. 8, pp. 746-751Google Search
24 
Junho Song, Seungwook Yoon, Kanggu Park, Euiseok Hwang, 2017, Hybrid Day-ahead Prediction of Power Consumption based on Linear Prediction and Gaussian Process with Atypical Residual of Meteorological Information, KIEE, pp. 33-35Google Search
25 
A. G. Abo-Khalil, D. Lee, 2007, SVR-based Wind Speed Estimation for Power Control of Wind Energy Generation System, 2007 Power Conversion Conference, Vol. nagoya, pp. 1431-1436DOI
26 
J. Yan, K. Li, E. Bai, A. Foley, 2015, Special condition wind power forecasting based on Gaussian Process and similar historical data, 2015 IEEE Power & Energy Society General Meeting, Vol. denver, pp. 1-5DOI
27 
N. Chen, Z. Qian, I. T. Nabney, X. Meng, march 2014, Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction, in IEEE Transactions on Power Systems, Vol. 29, No. 2, pp. 656-665DOI
28 
Kuster Corentin, 2017, Electric load forecasting models: A critical systematic review, Sustainable Cities and SociertyDOI