• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
F. Udrea, G. Deboy, T. Fujihira, March 2017, Superjunction Power Devices, History, Development, and Future Prospects, in IEEE Transactions on Electron Devices, Vol. 64, No. 3, pp. 713-727DOI
2 
Chen Xing-Bi, J. K. O. Sin, Feb 2001, Optimization of the specific on-resistance of the COOLMOS/sup TM/, in IEEE Transactions on Electron Devices, Vol. 48, No. 2, pp. 344-348DOI
3 
H. Ye, P. Haldar, Aug 2008, Optimization of the Porous-Silicon- Based Superjunction Power MOSFET, in IEEE Transactions on Electron Devices, Vol. 55, No. 8, pp. 2246-2251DOI
4 
W. Zhang, B. Zhang, Z. Li, M. Qiao, Z. Li, Dec 2015, Theory of Superjunction With NFD and FD Modes Based on Normalized Breakdown Voltage, in IEEE Transactions on Electron Devices, Vol. 62, No. 12, pp. 4114-4120DOI
5 
H. Huang, X. Chen, Oct 2012, Optimization of Specific On-Resistance of Balanced Symmetric Superjunction MOSFETs Based on a Better Approximation of Ionization Integral, in IEEE Transactions on Electron Devices, Vol. 59, No. 10, pp. 2742-2747DOI
6 
J. Kim, Apr 2019, Caution: Abnormal Variability Due to Terrestrial Cosmic Rays in Scaled-Down FinFETs, IEEE Tranactions on Electron Devices, Vol. 66, pp. 1887-1891DOI
7 
K. Ko, J. K. Lee, M. Kang, J. Jeon, H. Shin, Oct 2019, Prediction of Process Variation Effect for Ultrascaled GAA Vertical FET Devices Using a Machine Learning Approach, in IEEE Transactions on Electron Devices, Vol. 66, No. 10, pp. 4474-4477DOI
8 
H. Carrillo-Nuñez, N. Dimitrova, A. Asenov, V. Georgiev, Sept 2019, Machine Learning Approach for Predicting the Effect of Statistical Variability in Si Junctionless Nanowire Transistors, in IEEE Electron Device Letters, Vol. 40, No. 9, pp. 1366-1369DOI
9 
K. Mehta, H. -Y. Wong, Feb 2021, Prediction of FinFET Current- Voltage and Capacitance-Voltage Curves Using Machine Learning With Autoencoder, in IEEE Electron Device Letters, Vol. 42, No. 2, pp. 136-139DOI
10 
K. Akshay, S. Karmalkar, April 2021, Optimum Aspect Ratio of Superjunction Pillars Considering Charge Imbalance, in IEEE Transactions on Electron Devices, Vol. 68, No. 4, pp. 1798-1803DOI
11 
H. Wang, E. Napoli, F. Udrea, Dec 2009, Breakdown Voltage for Superjunction Power Devices With Charge Imbalance: An Analytical Model Valid for Both Punch Through and Non Punch Through Devices, in IEEE Transactions on Electron Devices, Vol. 56, No. 12, pp. 3175-3183DOI
12 
M. Alam, D. T. Morisette, J. A. Cooper, Aug 2018, Design Guidelines for Superjunction Devices in the Presence of Charge Imbalance, in IEEE Transactions on Electron Devices, Vol. 65, No. 8, pp. 3345-3351DOI
13 
E. Napoli, H. Wang, F. Udrea, March 2008, The Effect of Charge Imbalance on Superjunction Power Devices: An Exact Analytical Solution, in IEEE Electron Device Letters, Vol. 29, No. 3, pp. 249-251DOI
14 
P. M. Shenoy, A. Bhalla, G. M. Dolny, 1999, Analysis of the effect of charge imbalance on the static and dynamic characteristics of the super junction MOSFET, 11th International Symposium on Power Semiconductor Devices and ICs. ISPSD'99 Proceedings (Cat. No.99CH36312), pp. 99-102DOI
15 
Synopsys, 2019, Sentaurus Device User Guide, Q-versionGoogle Search
16 
Ke Guolin, Meng Qi, Finley Thomas, Wang Taifeng, Chen Wei, Ma Weidong, Ye Qiwei, Dec 2017, LightGBM: a highly efficient gradient boosting decision tree, In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, pp. 3149-3157Google Search
17 
Chen Tianqi, Aug 2016, XGBoost: A Scalable Tree Boosting System, In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, USA, pp. 785-794DOI
18 
R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, M. Ahmadi, , Microsoft Malware Classification Challenge, https://www.kaggle.com/c/malware-classification/Google Search