• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
M.K. Behera, I. Majumder, N. Nayak, 2018, Solar photovoltaic power forecasting using optimized modified extreme learning machine technique, Engineering Science and Technology, Vol. an international journal, pp. 21:428-438DOI
2 
P. Dawan, K. Sriprapha, S. Kittisontirak, T. Boonraksa, N. Junhuathon, W. Titiroongruang, S. Niemcharoen, 2020, Comparison of power output forecasting on the photovoltaic system using adaptive neuro-fuzzy inference systems and particle swarm optimization-artificial neural network model, Energies, Vol. 13:351DOI
3 
Y. Zhang, J. Ren, Y. Pu, P. Wang, 2020, Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis, Renewable Energy, Vol. 149, pp. 577-586DOI
4 
Y.K. Semero, J. Zhang, D. Zheng, 2018, Pv power forecasting using an integrated ga-pso-anfis approach and gaussian process regression based feature selection strategy, CSEE Journal of Power and Energy Systems. 4:210-218, pp. 4:210-218DOI
5 
M. Zamo, O. Mestre, P. Arbogast, 2014, A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part i: Deterministic forecast of hourly production, Solar Energy., pp. 105:792-803DOI
6 
F. Rodríguez, A. Fleetwood, A. Galarza, L. Fontán, 2018, Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control, Renewable Energy, pp. 126:855-864DOI
7 
A.T. Eseye, J. Zhang, D. Zheng, 2018, Short-term photovoltaic solar power forecasting using a hybrid wavelet- pso-svm model based on scada and meteorological information., Renewable Energy., pp. 118:357-367DOI
8 
J. Shi, W.-J. Lee, Y. Liu, Y. Yang, P. Wang, 2012, Forecasting power output of photovoltaic systems based on weather classification and support vector machines, IEEE Transactions on Industry Applications, pp. 48:1064-1069DOI
9 
Huang, C., L. Cao, N. Peng, S. Li, J. Zhang, L. Wang, X. Luo, J.-H. Wang, 2018, Day-ahead forecasting of hourly photovoltaic power based on robust multilayer perception, Sustainability, Vol. 10:4863DOI
10 
S. Kittisontirak, P. Dawan, N. Atiwongsangthong, W. Titiroongruang, P. Chinnavornrungsee, A. Hongsingthong, K. Sriprapha, P. Manosukritkul, 2017, A novel power output model for photovoltaic systemDOI
11 
S.M. Jung, S. Park, S.W. Jung, E Hwang, 2020, Monthly Electric Load Forecasting Using Transfer Learning for Smart Cities, Sustainability, Vol. 12, No. 16, pp. 6364DOI
12 
C.E. Borges, Y.K. Penya, I. Fernandez, 2012, Evaluating combined load forecasting in large power systems and smart grids, IEEE Transactions on Industrial Informatics, Vol. 9, No. 3, pp. 1570-1577DOI
13 
M. Leutbecher, T. N Palmer, Ensemble forecasting, Journal of computational physics, Vol. 227, No. 7, pp. 3515-3539DOI
14 
Zenko, B., Todorovski, L., Dzeroski, S, November 2001, A comparison of stacking with meta decision trees to bagging, boosting, and stacking with other methods., In Proceedings 2001 IEEE International Conference on Data Mining, pp. 669-670DOI
15 
W. El-Baz, P. Tzscheutschler, U Wagner, 2018, Day-ahead probabilistic PV generation forecast for buildings energy management systems, Solar Energy, Vol. 171, pp. 478-490DOI
16 
C. Persson, P. Bacher, T. Shiga, H Madsen, 2017, Multi- site solar power forecasting using gradient boosted regression trees, Solar Energy, Vol. 150, pp. 423-436DOI
17 
H. Zhou, Y. Zhang, L. Yang, Q Liu, October 2018, Short-term photovoltaic power forecasting based on Stacking-SVM., In 2018 9th International Conference on Information Technology in Medicine and Education (ITME), pp. 994-998DOI
18 
A. S. Khwaja, A. Anpalagan, M. Naeem, B. Venkatesh, Joint bagged-boosted artificial neural networks: Using ensemble machine learning to improve short-term electricity load forecasting, Electric Power Systems Research, 179, Vol. 106080Google Search
19 
N. Fraccanabbia, R. G. da Silva, M. H. D. M. Ribeiro, S. R. Moreno, L. dos Santos Coelho, V. C Mariani, July 2020, Solar Power Forecasting Based on Ensemble Learning Methods, In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1-7DOI
20 
S. R. Moreno, R. G. da Silva, M. H. D. M. Ribeiro, N. Fraccanabbia, V. C. Mariani, L. D. S. Coelho, Belem Brazil, November 2019, Very short-term wind energy forecasting based on stacking ensemble, In 14th Brazilian Computational Intelligence Meeting (CBIC), pp. 1-7Google Search
21 
S. Choi, J. Hur, 2020, An ensemble learner-based bagging model using past output data for photovoltaic forecasting, Energies, Vol. 13, No. 6, pp. 1438DOI
22 
X. Luo, J. Sun, L. Wang, W. Wang, W. Zhao, J. Wu, Z. Zhang, 2018, Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy, IEEE Transactions on Industrial Informatics, Vol. 14, No. 11, pp. 4963-4971DOI
23 
L. Breiman, 1996, Stacked regressions, Machine learning, Vol. 24, No. 1, pp. 49-64DOI