• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
M. Krstic, P. V. Kokotovic, I. Kanellakopoulos, 1995, Non-, John Wiley & Sons Inc.Google Search
2 
H. K. Khalil, 2002, Nonlinear Systems, 3rd ed. Prentice-Hall: Upper Saddle RiverGoogle Search
3 
H. Shim, G. Park, Y. Joo, J. Back, N. H. Jo, 2016, Yet another tutorial of disturbance observer : robust stabilization and recovery of nominal performance, Control Theory Tech., Vol. 14, No. 3, pp. 237-249DOI
4 
I. H. Kim, Y. I. Son, 2017, Regulation of a DC/DC boost converter under parametric uncertainty and input voltage variation using nested reduced-order PI observers, IEEE Trans. Ind. Electron., Vol. 64, No. 1, pp. 552-562DOI
5 
V. I. Utkin, J. Shi, 1996, Integral sliding mode in systems operating under uncertainty conditions, Proc. of the 34th IEEE Conf. Decision and Control, pp. 4591-4596DOI
6 
C. Edwards, S. Spurgeon, 1998, Sliding Mode Control: Theory and Applications, Boca Raton FL CRC PressGoogle Search
7 
A. Pisano, A. Davila, L. Fridman, E. Usai, 2008, Cascade control of PM DC drives via second-order sliding-mode technique, IEEE Trans. Ind. Electron., Vol. 55, No. 11, pp. 3846-3854DOI
8 
S. Y. Jang, J. H. Yook, I. H. Kim, Y. I. Son, 2019, Design of a position controller for a mechanical system using a sliding mode disturbance observer-based controller, Trans. of KIEE, Vol. 68, No. 7, pp. 908-915Google Search
9 
J. Park, I. W. Sandberg, 1991, Universal approximation using radial-basis-function networks, Neural Comput., Vol. 3, No. 2, pp. 246-257DOI
10 
J. Liu, 2013, Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation Springer Science & Business MediaGoogle Search
11 
R. Yuan, X. Tan, G. Fan, J. Yi, 2014, Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations, Neurocomputing, Vol. 125, pp. 72-80DOI
12 
N.M. Moawad, W.M. Elawady, A. Sarhan, 2019, Development of an adaptive radial basis function neural network estimator- based continuous sliding mode control for uncertain nonlinear systems, ISA Trans., Vol. 87, pp. 200-216DOI
13 
C. Liu, G. Wen, Z. Zhao, R. Sedaghati, 2021, Neural- network-based sliding-mode control of an uncertain robot using dynamic model approximated switching gain, IEEE Trans. Cybern., Vol. 51, pp. 2339-2346DOI
14 
Y. Sun, J. Xu, G. Lin, W. Ji, L. Wang, 2022, RBF neural network-based supervisor control for maglev vehicles on an elastic track with network time delay, IEEE Trans. Ind. Informat., Vol. 18, No. 1, pp. 509-519DOI
15 
K. J. Waldron, G. L. Kinzel, S. K. Agrawal, 2016, Kinematics Dynamics and Design of Machinery, John Wiley & SonsGoogle Search
16 
Yangheon Machinery, 2005, HandexGoogle Search
17 
S. Lim, K. K. Kim, J. S. Shim, S. J. Kil, G. H. Lee, G. U. Cha, C. K. Cho, S. K. Hong, 2006, A rotating chamber mechanism and its controller for CTA guns, J. of the KIMST, Vol. 9, No. 1, pp. 50-59Google Search
18 
C. W. Lee, I. H. Kim, Y. I. Son, 2015, Design of a speed controller for vertical one-link manipulator using internal model-based disturbance observer, Trans. of KIEE, Vol. 64, No. 5, pp. 751-754DOI
19 
S. K. Sul, 2016, Control of Electric Machine Drive Systems, Seoul: HONGREUNG SCIENCE PUBLISHERGoogle Search
20 
Harold A Rothbart, 2004, Cam Design Handbook, MaGraw-HillGoogle Search