• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
V. M. G. Olivares, L. M. G. Torres, G. H. Cuartas, M. C. N. De la Hoz, 2019, Immunohistochemical profile of renal cell tumours, Revista Espanola De Patologia, Vol. 52, No. 4, pp. 214-221DOI
2 
J. J. Hsieh, M. P. Purdue, S. Signoretti, C. Swanton, L. Albiges, M. Schmidinger, D. Y. Heng, J. Larkin, V. Ficarra, 2017, Renal cell carcinoma, Nat. Rev. Dis. Primers, Vol. 3, No. 17010, pp. 1-19DOI
3 
W. M, Linehan, M. M. Walther, B. Zbar, 2003, The genetic basis of cancer of the kidney, J. Urol., Vol. 170, pp. 2163-2172DOI
4 
W. M. Linehan, B. Zbar, 2004, Focus on kidney cancer, Cancer Cell, Vol. 6, No. 3, pp. 223-228Google Search
5 
Cancer Genome Atlas Research Network, 2016, Comprehensive molecular characterization of papillary renal-cell carcinoma, N. Engl. J. Med., Vol. 374, No. 2, pp. 135-145Google Search
6 
L. A. Torre, B. Trabert, C. E. DeSantis, K. D. Miller, G. Samimi, C. D. Runowicz, M. M. Gaudet, A. Jemal, R. L. Siegel, 2018, Ovarian cancer statistics, 2018, CA Cancer J. Clin., Vol. 68, pp. 284-296DOI
7 
A. J. Peired, R. Campi, M. L. Angelotti, G. Antonelli, C. Conte, E. Lazzeri, F. Becherucci, L. Calistri, S. Serni, P. Romagnani, 2021, Sex and Gender Differences in Kidney Cancer: Clinical and Experimental Evidence, Cancers, Vol. 13, No. 18, pp. 4588DOI
8 
Y. Zhan, C. Pan, Y. Zhao, J. Li, B. Wu, S. Bai, 2021, Systematic Analysis of the Global, Regional and National Burden of Kidney Cancer from 1990 to 2017: Results from the Global Burden of Disease Study 2017, Eur. Urol. Focus, Vol. 8, No. 1, pp. 302-319DOI
9 
N. Chowdhury, C. G. Drake, 2020, Kidney cancer: an overview of current therapeutic approaches, Urol. Clin., Vol. 47, No. 4, pp. 419-431DOI
10 
D. A. Siegel, S. J. Henley, J. Li, L. A. Pollack, E. A. Van Dyne, A. White, pp 950-954 2017, Rates and trends of pediatric acute lymphoblastic leukemia—United States, 2001–2014, Morb. Mortal. Wkly. Rep., Vol. 66, No. 36, pp. 950-954DOI
11 
A. F. Olshan, Y. M. Kuo, A. M, Meyer, M. E. Nielsen, M. P. Purdue, W. K. Rathmell, 2013, Racial difference in histologic subtype of renal cell carcinoma, Cancer Med., Vol. 2, No. 5, pp. 744-749DOI
12 
L. Lipworth, A. K. Morgans, T. L. Edwards, D. A. Barocas, S. S. Chang, S. D. Herrell, D. F. Penson, M. J. Resnick, J. A. Smith, P. E. Clark, 2016, Renal cell cancer histological subtype distribution differs by race and sex, BJU Int., Vol. 117, No. 2, pp. 260-265DOI
13 
T. R. Rebbeck, 2018, Prostate cancer disparities by race and ethnicity: from nucleotide to neighborhood, Cold Spring Harbor Persp. Med., Vol. 8, No. 9, pp. a030387DOI
14 
S. J. O. Nomura, Y. T. Hwang, S. L. Gomez, T. T. Fung, S. L. Yeh, C. Dash, L. Allen, S. Philips, L. Hilakivi-Clarke, Y. L. Zheng, J. H. Y. Wang, 2017, Dietary intake of soy and cruciferous vegetables and treatment- related symptoms in Chinese-American and non-Hispanic White breast cancer survivors, Breast Cancer Res. Treat., Vol. 168, No. 2, pp. 467-79DOI
15 
P. Mamoshina, K. Kochetov, E. Putin, F. Cortese, A. Aliper, W. S. Lee, S. M. Ahn. L. Uhn, N. Skjodt, O. Kovalchuk, M. Scheibye-Knudsen, 2018, Population specific biomarkers of human aging: a big data study using South Korean, Canadian, and Eastern European patient populations, J. Gerontology: Ser. A, Vol. 73, No. 11, pp. 1482-1490DOI
16 
H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico, R. K. Yuen, Y. Hua, S. Gueroussov, H. S. Najafabadi, T. R. Hughes, Q. Morris, Y. Barash, A. R. Krainer, N. Jojic, S. W. Scherer, B. J. Blencowe, B. J. Frey, 2015, RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease, Science, Vol. 347, No. 6218, pp. 1-20DOI
17 
M. Amgad, H. Elfandy, H. Hussein, L. A. Atteya, M. A. T. Elsebaie, L. S. A. Elnasr, R. A. Sakr, H. S. E. Salem, A. F. Ismail, A. M. Saad, J. Ahmed, M. A. T. Elsebaie, M. Rahman, I. A. Ruhban, N. M. Elgazar, Y. Alagha, M. H. Osman, A. M. Alhusseiny, M. M. Khalaf, A. F. Younes, A. Abdulkarim, D. M. Younes, A. M. Gadallah, A. M. Elkashash, S. Y. Fala, B. M. Zaki, J. Beezley, D. R. Chittajallu, D. Manthey, D. A. Gutman, L. A. D. Cooper, 2019, Structured crowdsourcing enables convolutional segmentation of histology images, Bioinformatics, Vol. 35, No. 18, pp. 3461-3467DOI
18 
V. M. G. Olivares, L. M. G. Torres, G. H. Cuartas, M. C. N. De la Hoz, 2019, Immunohistochemical profile of renal cell tumours, Rev. Esp. Patol., Vol. 52, No. 4, pp. 214-221DOI
19 
accessed on 17 August, 2021, National Cancer Center. Available online: https://ncc.re.kr/ indexGoogle Search
20 
B. H. Chi, I. H. Chang, 2018, The overdiagnosis of kidney cancer in Koreans and the active surveillance on small renal mass, Korean J. Urol. Oncol., Vol. 16, No. 1, pp. 15-24DOI
21 
A. M. Ali, H. Zhuang, A. Ibrahim, O. Rehman, M. Huang, A. Wu, 2018, A machine learning approach for the classification of kidney cancer subtypes using miRNA genome data, Appl. Sci., Vol. 8, No. 12, pp. 1-14DOI
22 
H. M. Kim, S. J. Lee, S. J. Park, I. Y. Choi, S. H. Hong, 2021, Machine learning approach to predict the probability of recurrence of renal cell carcinoma after surgery: Prediction model development study, JMIR Med. Inform., Vol. 9, No. 3, pp. e25635DOI
23 
accessed on 17 August, 2021, Genomic Data Commons. Available online: https://portal.gdc. cancer.govGoogle Search
24 
B. J. Kim, S. H. Kim, 2018, Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method, PNAS USA, Vol. 115, No. 6, pp. 1322-1327DOI
25 
O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, D. Botstein, 2003, A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae), PNAS USA, Vol. 100, No. 14, pp. 8348-8353DOI
26 
N. Hadjiyski, 2020, Kidney cancer staging: Deep learning neural network based approach, 2020 International Conference on E-Health and Bioengineering (EHB 2020)DOI
27 
H. S. Shon, E. Batbaatar, K. O. Kim, E. J. Cha, K. A. Kim, 2020, Classification of kidney cancer data using cost-sensitive hybrid deep learning approach, Symmetry, Vol. 12, No. 1,154DOI
28 
N. Simidjievski, C. Bodnar, I. Tariq, P. Scherer, H. A. Terre, Z. Shams, M. Jamnik, P. Liò, 2019, Variational autoencoders for cancer data integration: Design principles and computational practice. Front. Genet.,, Vol. 10, No. 1205DOI
29 
P. Baldi, K. Hornik, 1989, Neural networks and principal component analysis: Learning from examples without local minima., Neural Netw., Vol. 2, pp. 53-58DOI
30 
M. Mohri, A. Rostamizadeh, A. Talwalkar, 2012, Foundations of Machine Learning, MIT PressGoogle Search
31 
P. Vincent, H. Larochelle, L. Lajoie, Y. Bengio, P. A. Manzagol, 2010, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J. Mach. Learn. Res., Vol. 11, pp. 3371-3408Google Search
32 
M. A. Ranzato, C. S. Poultney, S. Chopra, Y. LeCun, 2007, Efficient learning of sparse representations with an energy-based model, Adv. Neural Inf. Process. Syst., Vol. 19, pp. 1137-1144Google Search
33 
D. P. Kingma, M. Welling, 2014, Auto-encoding variational bayes, Proceedings of the 2nd International Conference on Learning RepresentationsDOI
34 
Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, L. Carin, 2016, Variational autoencoder for deep learning of images, labels and captions, 30th Conference on Neural Information Processing Systems (NIPS 2016)Google Search
35 
K. Simonyan, A. Zisserman, 2015, Very deep convolutional networks for large-scale image recognition, The 3rd International Conference on Learning Representations (ICLR)DOI
36 
L. Le, A. Patterson, M. White, 2018, Supervised autoencoders: Improving generalization performance with unsupervised regularizers, 32nd Conference on Neural Information Processing Systems (NIPS 2018)Google Search
37 
M. Mohri, A. Rostamizadeh, D. Storcheus, 2015, Generalization bounds for supervised dimensionality reduction, JMLR: Workshop and Conf. Proc., Vol. 44, pp. 226-241Google Search
38 
L. A. Gottlieb, A. Kontorovich, R. Krauthgamer, 2016, Adaptive metric dimensionality reduction, Theor. Comput. Sci., Vol. 620, pp. 105-118DOI
39 
K. Sohn, H. Lee, X. Yan, 2015, Learning structured output representation using deep conditional generative models, Proceedings of the 28th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3483-3491Google Search
40 
S. Belharbi, R. Hérault, C. Chatelain, S. Adam, 2018, Deep neural networks regularization for structured output prediction, Neurocomputing, Vol. 281, pp. 169-177DOI
41 
Y. Bengio, E. Laufer, G. Alain, J. Yosinski, 2014, Deep generative stochastic networks trainable by backprop, Proceeding of the 31st International Conference on Machine Learning, Vol. 32, pp. 226-234Google Search
42 
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, 2011, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., Vol. 12, pp. 2825-2830Google Search
43 
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, 2019, Pytorch: An imperative style, high-performance deep learning library, Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 8026-8037Google Search
44 
I. Lucca, T. Klatte, H. Fajkovic, M. De Martino, S. F. Shariat, 2015, Gender differences in incidence and outcomes of urothelial and kidney cancer, Nat. Rev. Urol., Vol. 12, No. 12, pp. 585-592DOI
45 
M. Mancini, M. Righetto, G. Baggio, 2020, Gender-related approach to kidney cancer management: Moving forward, Int. J. Mol. Sci., Vol. 21, No. 9, pp. 3378Google Search
46 
D. Hepps, A. Chernoff, 2006, Risk of renal insufficiency in African-Americans after radical nephrectomy for kidney cancer, Urologic Oncology: Seminars and Original Investigations, Vol. 24, No. 5, pp. 391-395DOI
47 
B. Shuch, S. Vourganti, C. J. Ricketts, L. Middleton, J. Peterson, M. J. Merino, A. R. Metwalli, R. Srinivasan, W. M. Linehan, 2014, Defining early-onset kidney cancer: implications for germline and somatic mutation testing and clinical management, J. Clin. Oncol., Vol. 32, No. 5, pp. 431-437DOI
48 
J. R. Vasselli, J. H. Shih, S. R. Iyengar, J. Maranchie, J. Riss, R. Worrell, C. Torres-Cabala, R. Tabios, A. Mariotti, R. Stearman, M. Merino, W. M. Linehan, 2003, Predicting survival in patients with metastatic kidney cancer by gene- expression profiling in the primary tumor, Proceedings of the National Academy of Sciences, Vol. 100, No. 12, pp. 6958-6963DOI
49 
M. Mostavi, Y. C. Chiu, Y Huang, Y. Chen, 2020, Convolutional neural network models for cancer type prediction based on gene expression, BMC Med. Genom., Vol. 13, No. 44, pp. 1-13DOI
50 
N. E. M. Khalifa, M. H. N. Taha, D. E. Ali, A. Slowik, A. E. Hassanien, 2020, Artificial intelligence technique for gene expression by tumor RNA-Seq data: a novel optimized deep learning approach, IEEE Access, Vol. 8, pp. 22874-22883Google Search
51 
R. Tabares-Soto, S. Orozco-Arias, V. Romero-Cano, V. S. Bucheli, J. L Rodríguez-Sotelo, C. F. Jiménez-Varón, 2020, A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data, PeerJ Comput. Sci., Vol. 6, No. e270DOI