• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
2020, ENTSO-E HVDC Utilization and Unavailability Statistics, ENTSO-EGoogle Search
2 
J. O’Sullivan, A. Rogers, D. Flynn, P. Smith, A. Mullane, M. O’Malley, Nov 2014, Studying the Maximum Instantaneous Non-Synchronous Generation in an island system – Frequency Stability Challenges in Ireland, IEEE Transaction on Power System, Vol. 29, No. 6, pp. 2943-2951DOI
3 
2016, Frequency Stability Evaluation Criteria for the Synchronous Zone of Continental Europe, ENTSO-EGoogle Search
4 
C.E. Spallarossa, Y. Pipelzadeh, T. C. Green, July 2013, Influence of frequency-droop supplementary on disturbance propagation through VSC HVDC links, IEEE General Meeting Power & Energy SocietyDOI
5 
Orum. E, Kuivaniemi. M, Laasonen. M, 2018, Future System Inertia 2, ENTSO-EGoogle Search
6 
2021, Operational Limits and Conditions for Mutual Frequency support over HVDC, ENTSO-EGoogle Search
7 
D. Obradovic, 2020, Coordinated Frequency Control between Interconnected AC/DC Systems, Licentiate Thesis in Electrical Engineering Stockholm SwedenGoogle Search
8 
2022, Fast Frequency Reserve – Solution to the Nordic Inertia Challenge, ENTSO-EGoogle Search
9 
2018, Limited frequency sensitive mode, ENTSO-E guidance document for national implementation for network codes on grid connection, ENTSO-EGoogle Search
10 
J. S. Park, U. F. Ramadhan, H. J. Lee, J. S. Jang, M. H. Yoon, 2021, Apply the Nonlinear Droop Control of ESS used for Frequency Anciliary Service, KIEEGoogle Search
11 
J. C. Vasquez, J. M. Cuerrero, A. Luna, P. Rodriguez, R. Teodorescu, Oct 2019, Adaptive Droop Control Applied to Voltage- Source Inverters Operating in Grid-Connected and Islanded Modes, IEEE Transactions on Industrial Electronics, Vol. 56, No. 10, pp. 4088-4096DOI
12 
A. A. Moghadam, Q. Shafiee, J. C. Vasquez, J. M. Curerrero, Oct 2016, Optimal Adaptive Droop Control for Effective Load Sharing in AC Microgrids, IEEE Industrial Electronics SocietyDOI
13 
Z. Zhang, D. Zhang, R. C. Qiu, March 2020, Deep Reinforcement Learning for Power System Applications: An Overview, CSEE Journal of Power and Energy Systems, Vol. 6, No. 1, pp. 213-225DOI
14 
J. Duan, R. Diao, Z. Wang, B. Zhang, D. Bian, Z.Yi, Jan 2020, Deep-Reinforcement-Learning-Based Autonomous Voltage Control for Power Grid Operations, IEEE Transactions on Power Systems, Vol. 35, No. 1, pp. 814-817DOI
15 
A. H. El-Eibary, M. A.Attia, Sept 2021, An Integrated Seamless Control Strategy for Distributed Generators based on a Deep learning Artificial Neural Network, MDPIDOI
16 
D. O. Amoateng, M. S. Elmoursi, July 2018, Adaptive Voltage and Frequency Control of Islanded Multi-Microgirds, IEEE Transactions on Power Systems, Vol. 33, No. 4, pp. 4454-4465DOI
17 
2015, China 2050 High Renewable Energy Penetration Scenario and Roadmap Study, Energy Research Institute National Development and Reform CommissionGoogle Search
18 
2020, Forecast International’s Energy Portal, FI Power WebGoogle Search
19 
2018, China Energy Efficiency Report, International Energy CharterGoogle Search