KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2023-07
(Vol.72 No.07)
10.5370/KIEE.2023.72.7.843
Journal XML
XML
PDF
INFO
REF
References
1
W. S. Lai, J. B. Huang, Z. Hu, Z. Ahuja, M. H. Yang, 2016, A comparative study for single image blind deblurring, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701-1709
2
W. Zuo, D. Ren, D. Zhang, D., S. Gu, S., L. Zhang, 2016, Learning iteration-wise generalized shrinkage–thresholding operators for blind deconvolution, IEEE Transactions on Image Processing, Vol. 25, pp. 1751-1764
3
J. Zhang, J. Pan, W. S. Lai, R. W. H. Lau, M. H. Yang, 2017, Learning fully convolutional networks for iterative non-blind deconvolution, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3817-3825
4
L. Xu, J.S. Ren, C. Liu, J. Jia, 2014, Deep convolutional neural network for image deconvolution, 27th Int. Conf. Neural Inf. Process. Syst., pp. 1790-1798
5
R. Yan, L. Shao, 2016, Blind image blur estimation via deep learning, IEEE Trans Image Process., Vol. 25, pp. 1910-1921
6
J. Zhang, J. Pan, J. Ren, Y. Song, L. Bao, R. W. H. Lau, M. H. Yang, 2018, Dynamic scene deblurring using spatially variant recurrent neural networks, IEEE Conf. Comput. Vision Pattern Recognit., pp. 2521-2529
7
X. Tao, H. Gao, X. Shen, J. Wang, J. Jia, 2018, Scale-recurrent network for deep image deblurring, IEEE Conf. Comput Vision Pattern Recognit., pp. 8174-8182
8
S. Sahu, M. K. Lenka, P. K. Sa, 2019, Blind deblurring using deep learning: a survey, arXiv:1907.10128
9
O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, J. Matas, 2018, DeblurGAN: blind motion deblurring using conditional adversarial networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Reconition (CVPR), pp. 8183-8192
10
C. Agarwal, S. Khobahi, A. Bose, M. Soltanalian, D. Schonfeld, Oct 2020, Deep-URL: a model-aware approach to blind deconvolution based on deep unfolded Richardson-Lucy network, IEEE International Conference on Image Processing 2020, pp. 25-28
11
S. Nah, T. H. Kim, K. M. Lee, 2017, Deep multi-scale convolutional neural network for dynamic scene deblurring, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3883-3891
12
J. Zhang, J. Pan, J. Ren, Y. Song, L. Bao, R. W. H. Lau, M. H. Yang, 2018, Dynamic scene deblurring using spatially variant recurrent neural networks, IEEE Conf. Comput. Vision Pattern Recognition, pp. 2521-2529
13
K. He, X. Zhang, S. Ren, J. Sun, 2016, Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778
14
O. Ronneberger, P. Fischer, T. Brox, 2015, U-Net: convolutional networks for biomedical image segmentation, MICCAI 2015: Medical Image Computing and Computer- Assisted Intervention 2015, pp. 234-241
15
Z. Zhang, Q. Liu, Y. Wang, May 2018, Road extraction by deep residual u-net, IEEE Geoscience and Remote Sensing Letters, Vol. 15, pp. 749-753
16
A. Levin, Y. Weiss, F. Durand, W. T. Freeman, June 2011, Efficient marginal likelihood optimization in blind deconvolution, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2011
17
S. Cho, S. Lee, 2009, Fast motion deblurring, ACM Transactions on Graphics, Vol. 28, pp. 1-8
18
D. Perrone, P. Favaro, 2016, A clearer picture of total variation blind deconvolution, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 38, pp. 1041-1055
19
G. Huang, Z. Liu, L. Maaten, K. Q. Weinberger, 2017, Densely connected convolutional networks, in Proc. of IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 4700-4708
20
PyTorch, http://pytorch.org.
21
D. Kingma, J. B. Adam, 2014, Adam: a method for stochastic optimization, arXiv:1412.6980
22
J. Han, J. Choi, C. Lee, August 2021, Image denoising method based on deep learning using improved U-net, IEIE Transactions on Smart Processing and Computing, Vol. 10, No. 4, pp. 291-295
23
, http://cocodataset.org.