• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
W. S. Lai, J. B. Huang, Z. Hu, Z. Ahuja, M. H. Yang, 2016, A comparative study for single image blind deblurring, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701-1709Google Search
2 
W. Zuo, D. Ren, D. Zhang, D., S. Gu, S., L. Zhang, 2016, Learning iteration-wise generalized shrinkage–thresholding operators for blind deconvolution, IEEE Transactions on Image Processing, Vol. 25, pp. 1751-1764DOI
3 
J. Zhang, J. Pan, W. S. Lai, R. W. H. Lau, M. H. Yang, 2017, Learning fully convolutional networks for iterative non-blind deconvolution, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3817-3825Google Search
4 
L. Xu, J.S. Ren, C. Liu, J. Jia, 2014, Deep convolutional neural network for image deconvolution, 27th Int. Conf. Neural Inf. Process. Syst., pp. 1790-1798Google Search
5 
R. Yan, L. Shao, 2016, Blind image blur estimation via deep learning, IEEE Trans Image Process., Vol. 25, pp. 1910-1921DOI
6 
J. Zhang, J. Pan, J. Ren, Y. Song, L. Bao, R. W. H. Lau, M. H. Yang, 2018, Dynamic scene deblurring using spatially variant recurrent neural networks, IEEE Conf. Comput. Vision Pattern Recognit., pp. 2521-2529Google Search
7 
X. Tao, H. Gao, X. Shen, J. Wang, J. Jia, 2018, Scale-recurrent network for deep image deblurring, IEEE Conf. Comput Vision Pattern Recognit., pp. 8174-8182Google Search
8 
S. Sahu, M. K. Lenka, P. K. Sa, 2019, Blind deblurring using deep learning: a survey, arXiv:1907.10128Google Search
9 
O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, J. Matas, 2018, DeblurGAN: blind motion deblurring using conditional adversarial networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Reconition (CVPR), pp. 8183-8192Google Search
10 
C. Agarwal, S. Khobahi, A. Bose, M. Soltanalian, D. Schonfeld, Oct 2020, Deep-URL: a model-aware approach to blind deconvolution based on deep unfolded Richardson-Lucy network, IEEE International Conference on Image Processing 2020, pp. 25-28DOI
11 
S. Nah, T. H. Kim, K. M. Lee, 2017, Deep multi-scale convolutional neural network for dynamic scene deblurring, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3883-3891Google Search
12 
J. Zhang, J. Pan, J. Ren, Y. Song, L. Bao, R. W. H. Lau, M. H. Yang, 2018, Dynamic scene deblurring using spatially variant recurrent neural networks, IEEE Conf. Comput. Vision Pattern Recognition, pp. 2521-2529Google Search
13 
K. He, X. Zhang, S. Ren, J. Sun, 2016, Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778Google Search
14 
O. Ronneberger, P. Fischer, T. Brox, 2015, U-Net: convolutional networks for biomedical image segmentation, MICCAI 2015: Medical Image Computing and Computer- Assisted Intervention 2015, pp. 234-241Google Search
15 
Z. Zhang, Q. Liu, Y. Wang, May 2018, Road extraction by deep residual u-net, IEEE Geoscience and Remote Sensing Letters, Vol. 15, pp. 749-753DOI
16 
A. Levin, Y. Weiss, F. Durand, W. T. Freeman, June 2011, Efficient marginal likelihood optimization in blind deconvolution, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2011DOI
17 
S. Cho, S. Lee, 2009, Fast motion deblurring, ACM Transactions on Graphics, Vol. 28, pp. 1-8DOI
18 
D. Perrone, P. Favaro, 2016, A clearer picture of total variation blind deconvolution, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 38, pp. 1041-1055DOI
19 
G. Huang, Z. Liu, L. Maaten, K. Q. Weinberger, 2017, Densely connected convolutional networks, in Proc. of IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 4700-4708Google Search
20 
PyTorch, http://pytorch.org.Google Search
21 
D. Kingma, J. B. Adam, 2014, Adam: a method for stochastic optimization, arXiv:1412.6980Google Search
22 
J. Han, J. Choi, C. Lee, August 2021, Image denoising method based on deep learning using improved U-net, IEIE Transactions on Smart Processing and Computing, Vol. 10, No. 4, pp. 291-295DOI
23 
, http://cocodataset.org.Google Search