• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Bouzid Ait-Amir, Pougnet Philippe, , 2020, Meta-model development, Embedded mechatronic systems 2. ISTE, pp. 157-187DOI
2 
Lening Wang, 2020, Meta-modeling of high-fidelity FEA simulation for efficient product and process design in additive manufacturing, Additive Manufacturing 35 (2020): 101211.DOI
3 
Weiss, Karl, M. Khoshgoftaar Taghi, 2016, A survey of transfer learning, Journal of Big data 3.1, pp. 1-40DOI
4 
Li Yang, Shami Abdallah, 2020, On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing 415, pp. 295-316DOI
5 
Răzvan Andonie, 2019, Hyperparameter optimization in learning systems, Journal of Membrane Computing 1.4, pp. 279-291DOI
6 
Ji-Hoon Han, 2020, Hyperparameter optimization using a genetic algorithm considering verification time in a convolutional neural network, Journal of Electrical Engineering & Technology 15, pp. 721-726DOI
7 
Abbas Omidi, 2021, An embedded deep learning-based package for traffic law enforcement, Proceedings of the IEEE/CVF international conference on computer visionGoogle Search
8 
Beltrán-Pulido, Andrés, Bilionis Ilias, Aliprantis Dionysios, 2022, Physics-informed neural networks for solving parametric magnetostatic problems, IEEE Transactions on Energy Conversion 37.4, pp. 2678-2689DOI
9 
Hesheng Tang, 2022, A transfer learning-physics informed neural network (TL-PINN) for vortex-induced vibration, Ocean Engineering 266, Vol. 113101DOI
10 
Nabian Mohammad Amin, Gladstone Rini Jasmine, Jasmine Meidani Hadi, 2021, Efficient training of physics‐informed neural networks via importance sampling, Computer‐Aided Civil and Infrastructure Engineering 36.8, pp. 962-977DOI
11 
Shengze Cai, 2021, Physics-informed neural networks for heat transfer problems, Journal of Heat Transfer 143.6, Vol. 060801DOI
12 
Sho Sonoda, Murata Noboru, 2017, Neural network with unbounded activation functions is universal approximator, Applied and Computational Harmonic Analysis 43.2, pp. 233-268DOI
13 
Busse Christian, P. Kach Andrew, M. Wagner Stephan, 2017, Boundary conditions: What they are, how to explore them, why we need them, and when to consider them, Organizational Research Methods 20.4, pp. 574-609DOI
14 
D. H. Weinstein, 1934, Modified Ritz method, Proceedings of the National Academy of Sciences 20.9, pp. 529-532DOI
15 
S. G. O. P. A. L. Patro, Kumar Sahu. Kishore, 2015, Normalization: A preprocessing stage, arXiv preprint arXiv:1503.06462DOI
16 
Lisa Torrey, Shavlik Jude, 2010, Transfer learning, Handbook of research on machine learning applications and trends: algorithms, Vol. methods, No. and techniques. igi global, pp. 242-264DOI
17 
Misha Denil, 2013, Predicting parameters in deep learning, Advances in neural information processing systems 26Google Search
18 
Ramachandran Prajit, Zoph Barret, V. Le. Quoc, 2017, Searching for activation functions, arXiv preprint arXiv:1710.05941DOI
19 
David L. Elliott, 1993, A better activation function for artificial neural networks, 1993Google Search