KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2023-10
(Vol.72 No.10)
10.5370/KIEE.2023.72.10.1149
Journal XML
XML
PDF
INFO
REF
References
1
Bouzid Ait-Amir, Pougnet Philippe, , 2020, Meta-model development, Embedded mechatronic systems 2. ISTE, pp. 157-187
2
Lening Wang, 2020, Meta-modeling of high-fidelity FEA simulation for efficient product and process design in additive manufacturing, Additive Manufacturing 35 (2020): 101211.
3
Weiss, Karl, M. Khoshgoftaar Taghi, 2016, A survey of transfer learning, Journal of Big data 3.1, pp. 1-40
4
Li Yang, Shami Abdallah, 2020, On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing 415, pp. 295-316
5
Răzvan Andonie, 2019, Hyperparameter optimization in learning systems, Journal of Membrane Computing 1.4, pp. 279-291
6
Ji-Hoon Han, 2020, Hyperparameter optimization using a genetic algorithm considering verification time in a convolutional neural network, Journal of Electrical Engineering & Technology 15, pp. 721-726
7
Abbas Omidi, 2021, An embedded deep learning-based package for traffic law enforcement, Proceedings of the IEEE/CVF international conference on computer vision
8
Beltrán-Pulido, Andrés, Bilionis Ilias, Aliprantis Dionysios, 2022, Physics-informed neural networks for solving parametric magnetostatic problems, IEEE Transactions on Energy Conversion 37.4, pp. 2678-2689
9
Hesheng Tang, 2022, A transfer learning-physics informed neural network (TL-PINN) for vortex-induced vibration, Ocean Engineering 266, Vol. 113101
10
Nabian Mohammad Amin, Gladstone Rini Jasmine, Jasmine Meidani Hadi, 2021, Efficient training of physics‐informed neural networks via importance sampling, Computer‐Aided Civil and Infrastructure Engineering 36.8, pp. 962-977
11
Shengze Cai, 2021, Physics-informed neural networks for heat transfer problems, Journal of Heat Transfer 143.6, Vol. 060801
12
Sho Sonoda, Murata Noboru, 2017, Neural network with unbounded activation functions is universal approximator, Applied and Computational Harmonic Analysis 43.2, pp. 233-268
13
Busse Christian, P. Kach Andrew, M. Wagner Stephan, 2017, Boundary conditions: What they are, how to explore them, why we need them, and when to consider them, Organizational Research Methods 20.4, pp. 574-609
14
D. H. Weinstein, 1934, Modified Ritz method, Proceedings of the National Academy of Sciences 20.9, pp. 529-532
15
S. G. O. P. A. L. Patro, Kumar Sahu. Kishore, 2015, Normalization: A preprocessing stage, arXiv preprint arXiv:1503.06462
16
Lisa Torrey, Shavlik Jude, 2010, Transfer learning, Handbook of research on machine learning applications and trends: algorithms, Vol. methods, No. and techniques. igi global, pp. 242-264
17
Misha Denil, 2013, Predicting parameters in deep learning, Advances in neural information processing systems 26
18
Ramachandran Prajit, Zoph Barret, V. Le. Quoc, 2017, Searching for activation functions, arXiv preprint arXiv:1710.05941
19
David L. Elliott, 1993, A better activation function for artificial neural networks, 1993