• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, 2004, Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions, IEEE transactions on Power Systems, Vol. 19, No. 3, pp. 1387-1401DOI
2 
M.A. Pai, P.W. Sauer, 1989, Stability analysis of power systems by Lyapunov's direct method, IEEE Control Systems Magazine, Vol. 9, No. 1, pp. 23-27DOI
3 
IEEE Standard for Synchrophasor Measurements for Power Systems, 2011, IEEE Standard C37.118.1-2011Google Search
4 
F. R. Gomez, A. D. Rajapakse, U. D. Annakkage, I. T. Fernando, 2010, Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements, IEEE Transactions on Power Systems, Vol. 26, No. 3, pp. 1474-1483DOI
5 
N. I. A. Wahab, A. Mohamed, A. Hussain, 2011, Fast transient stability assessment of large power system using probabilistic neural network with feature reduction techniques, Expert systems with applications, Vol. 38, No. 9, pp. 11112-11119DOI
6 
H. Hosseini, S. Naderi, S. Afsharnia, 2019, New approach to transient stability prediction of power systems in wide area measurement systems based on multiple‐criteria decision making theory, IET Generation, Transmission & Distribution, Vol. 13, No. 21, pp. 4960-4967DOI
7 
Z. Shi., W. Yao., L. Zeng., J. Wen., J. Fang., X. Ai., J. Wen., 2023, Convolutional neural network-based power system transient stability assessment and instability mode prediction, Applied EnergyDOI
8 
X. Li, Z. Yang, P. Guo, J. Cheng, 2021, An intelligent transient stability assessment framework with continual learning ability. IEEE Transactions on Industrial Informatics, Vol. 17, No. 12, pp. 8131-8141DOI
9 
V. Kumar, U. Prasad, S.R. Mohanty, 2023, Entirely Coupled Recurrent Neural Network-Based Backstepping Control for Global Stability of Power System Networks, IEEE Transactions on Automation Science and Engineering.DOI
10 
S. Hochreiter, J. Schmidhuber, 1997, Long short-term memory, Neural computation, Vol. 9, No. 8, pp. 1735-1780Google Search
11 
J.J Kim, H.S. Lee, S.S. Kim, J.H. Park, 2023, Real-Time Power System Transient Stability Prediction Using Convolutional Layer and Long Short-Term Memory, Journal of Electrical Engineering & Technology, Vol. 18DOI
12 
W. Li, Z. Zhang, M. Wang, H. Chen, 2023, Fabric Defect Detection Algorithm Based on Image Saliency Region and Similarity Location, Electronics, Vol. 12, No. 6DOI
13 
L. Mai, Y. Niu, F. Liu, 2013, Saliency aggregation: A data-driven approach, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1131-1138Google Search
14 
S.S Seo, S.H. Ki, M.C. Kim, 2021, A Novel Just-Noticeable- Difference-Based Saliency-Channel Attention Residual Network for Full-Reference Image Quality Predictions, IEEE Transactions on Circuits and System for Video Technology, Vol. 31, No. 7, pp. 2602-2616DOI
15 
Niu Yuzhen, Chen Jianer, Ke Xiao, 2019, Stereoscopic Image Saliency Detection Optimization: A Multi-Cue-Driven Approach, IEEE Access, Vol. 7, pp. 19835-19847DOI
16 
G. Gürses-Tran, T.A. Körner, A. Monti, 2022, Introducing explainability in sequence-to-sequence learning for short-term load forecasting, Electric Power Systems ResearchDOI
17 
G. Gürses-Tran, A. Monti, 2022, Advances in time series forecasting development for power systems’ operation with MLOps. Forecasting, Vol. 4, No. 2, pp. 501-524DOI
18 
Z. Liu, W. Zou, O. Le Meur, 2014, Saliency tree: A novel saliency detection framework, IEEE Transactions on Image Processing, Vol. 23, No. 5, pp. 1937-1952DOI
19 
Kyung Hyung Jang, Korea, Infrared Small Target Detection using Multi-scale Visual Attention Model, Ph. D. dissertation, Dept. of Computer Science and Engineering, Hanyang University, Korea.Google Search
20 
J.H. Chow, A. Chakrabortty, M. Arcak, B. Bhargava, A. Salazar, 2007, Synchronized phasor data based energy function analysis of dominant power transfer paths in large power systems, IEEE Transactions on Power Systems, Vol. 22, No. 2, pp. 727-734DOI
21 
S. K. Azman, Y. J. Isbeih, M. S. El Moursi, K. Elbassioni, 2020, A unified online deep learning prediction model for small signal and transient stability, IEEE Transactions on Power Systems, Vol. 35, No. 6, pp. 4585-4598DOI
22 
Y. Zhou, Q. Guo, H. Sun, Z. Yu, J. Wu, L. Hao, 2019, A novel data-driven approach for transient stability prediction of power systems considering the operational variability, International Journal of Electrical Power & Energy Systems, pp. 379-394DOI
23 
B. Wang, B. Fang, Y. Wang, H. Liu, Y. Liu, 2016, Power system transient stability assessment based on big data and the core vector machine, IEEE Transactions on Smart Grid, Vol. 7, No. 5, pp. 2561-2570DOI