• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
S. Wu, C. Hu, Z. Zhao, and Y. Zhu, “High-accuracy sensorless control of permanent magnet linear synchronous motors for variable speed trajectories,” IEEE Trans. Ind. Electron., vol. 71, no. 5, pp. 4396-4406, 2024.DOI
2 
S.-D. Huang, G.-Z. Cao, J. Xi, Y. Cui, C. Wu, and J. He, “Predictive position control of long-stroke planar motors for high-precision position applications,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 796-811, 2021.DOI
3 
S.-K. Sul, “Control of Electric Machine Drive Systems”, Hoboken, NJ, USA: Wiley, vol. 88, 2011.URL
4 
A. Pisano, A. Davila, L. Fridman, and E. Usai, “Cascade control of PM DC drives via second-order sliding-mode technique,” IEEE Trans. Ind. Electron., vol. 55, no. 11, pp. 3846-3854, 2008.DOI
5 
Z. Du, Y. Fang, X. Yang, and J. Li, “Design of PI controller for a class of discrete cascade control systems,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 4, pp. 2607-2615, 2023.DOI
6 
I. H. Kim, and Y. I. Son, “Regulation of a DC/DC boost converter under parametric uncertainty and input voltage variation using nested reduced-order PI observers,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 552-562, 2017.DOI
7 
H. Shim, G. Park, Y. Joo, J. Back, and N. H. Jo, “Yet another tutorial of disturbance observer : robust stabilization and recovery of nominal performance,” Control Theory Tech., vol. 14, no. 3, pp. 237-249, 2016.DOI
8 
E. Sariyildiz, R. Oboe, and K. Ohnishi, “Disturbance observer-based robust control and its applications: 35th anniversary overview,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2042-2053, Mar. 2020.DOI
9 
Y. I. Son, I. H. Kim, D. S. Choi, and H. Shim, “Robust cascade control of electric motor drives using dual reduced-order PI observer,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3672-3682, Jun. 2015.DOI
10 
T. H. Nguyen, T. T. Nguyen, V. Q. Nguyen, K. M. Le, H. N. Tran, J. W. Jeon, “An adaptive sliding-mode controller with a modified reduced-order proportional integral observer for speed regulation of a permanent magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 69, no. 7, pp. 7181-7191, 2022.DOI
11 
M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, Non- linear and Adaptive Control Design, John Wiley & Sons, Inc., 1995.URL
12 
H. K. Khalil, Nonlinear Systems, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2002.URL
13 
J. Park, and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246-257, 1991.DOI
14 
J. Liu, Radial Basis Function (RBF) Neural Network Control for Mechanical Systems: Design, Analysis and Matlab Simulation, Springer Science & Business Media, 2013.URL
15 
Y. I. Son, and S. Lim, “Design of an RBF neural network supervisory controller based on a sliding mode control approach,” Trans. of KIEE, vol. 70, no. 12, pp. 1984-1991, 2021.URL
16 
Y. Sun, J. Xu, G. Lin, W. Ji, and L. Wang, “RBF neural network-based supervisor control for maglev vehicles on an elastic track with network time delay,” IEEE Trans. Ind. Informat., vol. 18, no. 1, pp. 509-519, 2022.DOI
17 
Z. Chen, F. Huang, W. Sun, J. Gu, and B. Yao, “RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay,” IEEE/ASME Trans. Mechatron., vol. 25, no. 2, pp. 906-918, 2020.DOI
18 
H. Jie, G. Zheng, J. Zou, X. Xin, and L. Guo, “Adaptive decoupling control using radial basis function neural network for permanent magnet synchronous motor considering uncertain and time-varying parameters,” IEE Access, vol. 8, pp. 112323-112332, 2020.DOI
19 
S. J. Kim, M. Jin, and J. H. Suh, “A study on the design of error-based adaptive robust RBF neural network back-stepping controller for 2-DOF snake robot’s head,” IEEE Access, vol. 11, pp. 23146-23156, 2023.DOI
20 
C. Zhao, Y. Zuo, H. Wang, and C. H. T. Lee, “Online-trained radial basis function neural network compensator for current harmonics suppression of electric drives,” IEEE Trans. Ind. Electron., vol. 71, no. 12. pp. 15488-15498, 2024.DOI
21 
K. Johanastrom, and C. Canudas-de-Wit, “Revisiting the LuGre friction model,” IEEE Control Systems Magazine, vol. 28, no. 6, pp. 101-114, 2008.URL
22 
N. D. Amare, D. H. Kim, S. J. Yang, and Y. I. Son, “Boundary conditions for transient and robust performance of reduced-order model-based state feedback controller with PI observer,” Energies, vol 14. no. 10, pp.2881, 2021.DOI