• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
C. Andri, M. H. Alkawaz, and A. B. Sallow, “Adoption of Mobile Augmented Reality as a Campus Tour Application,” International Journal of Engineering and Technology, vol. 7, no. 4.11, pp. 64-69, Oct. 2018. DOI: 10.14419/ijet.v7i4.11.20689DOI
2 
T. L. Chou, and L. J. ChanLin, “Augmented Reality Smartphone Environment Orientation Application: A Case Study of the Fu-Jen University Mobile Campus Touring System,” Procedia - Social and Behavioral Sciences, vol. 46, pp. 410-416, 2012. DOI: 10.1016/j.sbspro.2012.05.132DOI
3 
C. Maines, and S. Tang, “An Application of Game Technology to Virtual University Campus Tour and Interior Navigation,” International Conference on Developments of E-Systems Engineering, pp. 341-346, Dec. 2015. DOI: 10.1109/DeSE.2015.15DOI
4 
C. Andri, M. H. Alkawaz, and S. R. Waheed, “Examining Effectiveness and User Experiences in 3D Mobile based Augmented Reality for MSU Virtual Tour,” 2019 IEEE International Conference on Automatic Control and Intelligent Systems, pp. 161-167, Jun. 2019. DOI: 10.1109/I2CACIS.2019.8825054DOI
5 
H. Ketmaneechairat, P. Yoksiri, and T. Jaisiri, “Searching Application for Southern Thailand Travel Guide on iPhone,” The Fifth International Conference on the Applications of Digital Information and Web Technologies, pp. 195-200, Feb. 2014. DOI: 10.1109/ICADIWT.2014.6814684DOI
6 
J. B. Kim, and C. Park, “Development of Mobile AR Tour Application for the National Palace Museum of Korea,” Virtual and Mixed Reality - New Trends, pp. 55-60, 2011. DOI: 10.1007/978-3-642-22021-0_7DOI
7 
J. Chen, J. Guo, and Y. Wang, “Mobile Augmented Reality System for Personal Museum Tour Guide Applications,” IET International Communication Conference on Wireless Mobile and Computing, pp. 262-265, 2011. DOI: 10.1049/cp.2011.0887DOI
8 
E. P. Noman, and S. Suyoto, “Design a Tourist Guide Mobile Application to Realize Sustainable Tourism in Kupang, Indonesia,” 2023 International Conference on Informatics Engineering, Science & Technology, pp. 1-10, Oct. 2023. DOI: 10.1109/INCITEST59455.2023.10397038DOI
9 
H. S. Lee, Y. J. Oh, Y. C. Park, S. J. Lim, and H. C. Cho, “Goral Detection System using YOLOv4 Object Detection Algorithm,” The Transactions of the Korean Institute of Electrical Engineers, vol. 71, no. 9, pp. 1308-1314, Sep. 2022. DOI: 10.5370/KIEE.2022.71.9.1308DOI
10 
T. H. Kim, and J. J. Park, “Semantic Segmentation of Teeth using Layered UNet,” The Transactions of the Korean Institute of Electrical Engineers, vol. 72, no. 11, pp. 1470-1476, Nov. 2023. DOI: 10.5370/KIEE.2023.72.11.1470DOI
11 
R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD: CNN Architecture for Weakly Supervised Place Recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5297-5307, Jun. 2016. DOI: 10.1109/CVPR.2016.572DOI
12 
S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J. Milford, “Visual Place Recognition: A Survey,” IEEE Transactions on Robotics, vol. 32, no. 1, pp. 1-19, Feb. 2016. DOI: 10.1109/TRO.2015.2496823DOI
13 
C. B. Lee, and H. C. Cho, “Application of Deep Learning-based Image Segmentation Algorithm for Korean Cattle Weight Estimation,” The Transactions of the Korean Institute of Electrical Engineers, vol. 70, no. 9, pp. 1336-1344, Sep. 2021. DOI: 10.5370/KIEE.2021.70.9.1336DOI
14 
H. Won, S. Kim, E. B. Kim, and O. Lee, “Analysis of a Deep Learning Synchrotron Imaging Model for Segmentation and Classification of Stroke Animal Models,” The Transactions of the Korean Institute of Electrical Engineers, vol. 72, no. 7, pp. 863-871, Jul. 2023. DOI: 10.5370/KIEE.2023.72.7.863DOI
15 
J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” Proceedings of the 33rd International Conference on Machine Learning, vol. 37, pp. 2256-2265, 2015. DOI: 10.48550/arXiv.1503.03585.DOI
16 
J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840-6851, 2020. DOI: 10.48550/arXiv.2006.11239DOI
17 
R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution Image Synthesis with Latent Diffusion Models,” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10674-10685, Jun. 2022. DOI: 10.1109/CVPR52688.2022.01042DOI
18 
H. Oh, J. Jung, S. Park, and K. Y. Lee, “Development of a Tour Information System for Smart Phones using CNN,” Proceedings of the Korean Institute of Information Scientists and Engineers Conference, pp. 1642-1644, 2019.URL
19 
J. Y. Kim, S. K. Song, J. G. Heo, and W. J. Yoon, “Development of Augmented Reality (AR) Smartphone Application for Hwaseong Fortress Tourism,” Architectural Institute of Korea Conference, vol. 34, no. 8, pp. 87-94, Aug. 2018. DOI: 10.5659/JAIK_PD.2018.34.8.87DOI
20 
V. Swaminathan, S. Arora, R. Bansal, and R. Rajalakshmi, “Autonomous Driving System with Road Sign Recognition using Convolutional Neural Networks,” 2019 International Conference on Computational Intelligence in Data Science, pp. 1-4, Feb. 2019. DOI: 10.1109/ICCIDS.2019.8862152DOI
21 
M. M. Ullah, A. Pronobis, B. Caputo, J. Luo, P. Jensfelt, and H. I. Christensen, “Towards Robust Place Recognition for Robot Localization,” 2008 IEEE International Conference on Robotics and Automation, pp. 530-537, May 2008. DOI: 10.1109/ROBOT.2008.4543261DOI
22 
D. Olid, J. M. Fácil, and J. Civera, “Single-view Place Recognition under Seasonal Changes,” arXiv preprint arXiv:1808.06516, 2018. DOI: 10.48550/arXiv.1808.06516DOI
23 
H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson, “From Generic to Specific Deep Representations for Visual Recognition,” 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 36-45, Jun. 2015. DOI: 10.1109/CVPRW.2015.7301270DOI
24 
S. Hausler, S. Garg, M. Xu, M. Milford, and T. Fischer, “Patch-NetVLAD: Multi-scale Fusion of Locally-global Descriptors for Place Recognition,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14141-14152, Jun. 2021. DOI: 10.1109/CVPR46437.2021.01392DOI
25 
F. Lu, L. Zhang, X. Lan, S. Dong, Y. Wang, and C. Yuan, “Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition,” arXiv preprint arXiv:2402.14505, 2024. DOI: 10.48550/arXiv.2402.14505DOI
26 
T. Tzachor, A. Shoshan, A. Shashua, and S. Mazor, “EffoVPR: Effective Foundation Model Utilization for Visual Place Recognition,” arXiv preprint arXiv:2405.18065, 2024. DOI: 10.48550/arXiv.2405.18065DOI
27 
A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and T. Pajdla, “24/7 Place Recognition by View Synthesis,” 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1808-1817, Jun. 2015. DOI: 10.1109/CVPR.2015.7298790DOI
28 
S. Parida, V. Srinivas, B. Jain, R. Naik, and N. Rao, “Survey on Diverse Image Inpainting using Diffusion Models,” 2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing, pp. 1-5, Apr. 2023. DOI: 10.1109/PCEMS58491.2023.10136091DOI
29 
W. Long, W. Zhao, and Z. Li, “Diverse Image Colorization Based on Diffusion Model,” 2023 6th International Conference on Artificial Intelligence and Big Data, pp. 860-865, May 2023. DOI: 10.1109/ICAIBD57115.2023.10206235DOI
30 
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” Medical Image Computing and Computer-Assisted Intervention, pp. 234-241, 2015. DOI: 10.1007/978-3-319-24574-4_28DOI
31 
D. P. Kingma, and M. Welling, “Auto-Encoding Variational Bayes,” arXiv preprint arXiv:1312.6114, 2013. DOI: 10.48550/arXiv.1312.6114DOI
32 
T. Zhang, Z. Wang, J. Huang, M. M. Tasnim, and W. Shi, “A Survey of Diffusion Based Image Generation Models: Issues and Their Solutions,” arXiv preprint arXiv:2308.13142, 2023. DOI: 10.48550/arXiv.2308.13142DOI
33 
T. Samajdar, J. Hellendoorn, M. B. Papamarkou, L. Buesing, and A. Romero, “Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets,” arXiv preprint arXiv:2311.15127, 2023. DOI: 10.48550/arXiv.2311.15127DOI
34 
C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet, and M. Norouzi, “Palette: Image-to-image Diffusion Models,” Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings, pp. 1-10, Aug. 2022. DOI: 10.1145/3528233.3530757DOI
35 
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, Jun. 2016. DOI: 10.1109/CVPR.2016.90DOI
36 
R. Fluss, D. Faraggi, and B. Reiser, “Estimation of the Youden Index and its Associated Cutoff Point,” Biometrical Journal, vol. 47, no. 4, pp. 458-472, Aug. 2005. DOI: 10.1002/bimj.200410135DOI