• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Ministry of Agriculture, Food, and Rural Affairs, “2023 National Survey on Public Awareness of Animal Protection and Welfare,” 2023.URL
2 
KB Management Research Institute, “2023 Korea Pet Report,” 2023.URL
3 
W. Uriawan, A. R. Atmadja, M. Irfan, I. Taufik & N. J. Luhung, “Comparison of Certainty Factor and Forward Chaining for Early Diagnosis of Cats Skin Diseases,” Proceedings of the 6th International Conference on Cyber and IT Service Management (CITSM), pp.693-699, 2018. DOI:10.1109/CITSM.2018.8674381DOI
4 
A. Suryavanshi, V. Kukreja, P. Srivastava, A. Bhattacherjee & R. S. Rawat, “Felis catus disease detection in the digital era: Combining CNN and Random Forest,” Proceedings of the 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI), 2023. DOI:10.1109/ICAIIHI57871.2023.10489457DOI
5 
A. M. Bapi, N. Nabi, S. A. R. Shuvo, P. Chakraborty & S. A. Khushbu, “CatEarMites: An Approach of Detecting Ear Mites of Cat Using Convolutional Neural Network,” Proceedings of the 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2022. DOI:10.1109/ICCCNT54827.2022.9984559DOI
6 
B. G. M. Habal, P. E. S. Tiong, J. R. Pasatiempo, M. J. Balen, M. R. Amarga & L. Juco, “Dog skin disease recognition using image segmentation and GPU enhanced convolutional neural network,” Proceedings of the 2021 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 2021. DOI:10.1109/HNICEM54116.2021.9731885DOI
7 
B. J. Andujar, N. J. Ferranco & J. F. Villaverde, “Recognition of Feline Epidermal Disease using Raspberry-Pi based Gray Level Co-occurrence Matrix and Support Vector Machine,” Proceedings of the 2021 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 2021. DOI:10.1109/HNICEM54116.2021.9731971DOI
8 
S. Hwang, H. K. Shin, J. M. Park, B. Kwon & M. G. Kang, “Classification of dog skin diseases using deep learning with images captured from multispectral imaging device,” Molecular & Cellular Toxicology, pp. 299-309, 2022. DOI:10.1007/s13273-022-00249-7DOI
9 
R. Jinhyung, S. M. Shin, K. Jhang, G. Lee & K. H. Song, “Deep learning-based diagnosis of feline hypertrophic cardiomyopathy,” Plos one, vol. 18, no. 2, article no. e0280438, 2023. DOI: 10.1371/journal.pone.0280438DOI
10 
A. Smith, P. W. Carroll, S. Aravamuthan, E. Walleser & H. Lin, “Computer vision model for the detection of canine pododermatitis and neoplasia of the paw,” Veterinary Dermatology, pp. 138-147, 2024.DOI:10.1111/vde.13221DOI
11 
K. BoKyeong, B. JaeYeon & C. KyungAe, “Mobile App for Detecting Canine Skin Diseases Using U-Net Image Segmentation,” Korea Society of Industrial Information Systems, pp. 25-34, 2024. DOI:10.9723/jksiis.2024.29.4.025DOI
12 
AI Open Innovation Hub, “Pet skin disease data,” http://www.aihub.or.kr/URL
13 
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit & N. Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” arXiv preprint arXiv:2010.11929, 2020. DOI:10.48550/arXiv.2010.11929DOI
14 
Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell & S. Xie, “A ConvNet for the 2020s,” In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11976-11986, Mar. 2022. DOI:10.48550/arXiv.2201.03545DOI
15 
K. He, X. Zhang, S. Ren & J. Sun, “Deep residual learning for image recognition,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016. DOI:10.48550/arXiv.1512.03385DOI
16 
F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251-1258, 2017. DOI:10.48550/arXiv.1610.02357DOI
17 
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin & B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10012-10022, 2021. DOI:10.48550/arXiv.2103.14030DOI
18 
H. Zhang, M. Cisse, Y. N. Dauphin & D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017. DOI:10.48550/arXiv.1710.09412DOI
19 
S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747, 2016. DOI:10.48550/arXiv.1609.04747DOI
20 
D. P. Kingma & J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv preprint arXiv:1412.6980, 2014. DOI:10.48550/arXiv.1412.6980DOI
21 
M. Zhang, J. Lucas, J. Ba & G. E. Hinton, “Lookahead optimizer: k steps forward, 1 step back,” arXiv preprint arXiv:1907.08610, 2019. DOI:10.48550/arXiv.1907.08610DOI