• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Forbes, “Pet Ownership Statistics 2024,” https://www.forbes.com/advisor/pet-insurance/pet-ownership-statisticsURL
2 
KB Management Research Institute, “2023 Korea Pet Report,” https://www.kbfg.com/kbresearch/report/reportView.do?reportId=2000396URL
3 
D. G. O'Neill, D. B. Church, P. D. McGreevy, P. C. Thomson, and D. C. Brodbelt, “Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England,” PloS One, vol. 9, no. 3, article no. e90501, 2014. DOI:10.1371/journal.pone.0090501DOI
4 
A. Smith, P. W. Carroll, S. Aravamuthan, E. Walleser, H. Lin, K. Anklam, ... and N. Apostolopoulos, “Computer vision model for the detection of canine pododermatitis and neoplasia of the paw,” Veterinary Dermatology, vol. 35, no. 2, pp. 138-147, 2024. DOI:10.1111/vde.13221DOI
5 
S. Hwang, H. K. Shin, J. M. Park, B. Kwon, and M. G. Kang, “Classification of dog skin diseases using deep learning with images captured from multispectral imaging device,” Molecular & Cellular Toxicology, vol. 18, no. 3, pp. 299-309, 2022. DOI:10.1007/s13273-022-00249-7DOI
6 
M. Salvi, F. Molinari, S. Iussich, L. V. Muscatello, L. Pazzini, S. Benali, ... and L. Aresu, “Histopathological classification of canine cutaneous round cell tumors using deep learning: a multi-center study,” Frontiers in Veterinary Science, vol. 8, article no. 640944, 2021. DOI:10.3389/fvets.2021.640944DOI
7 
G. Dank, T. Buber, G. Polliack, G. Aviram, A. Rice, A. Yehudayoff, and M. S. Kent, “A pilot study for a non-invasive system for detection of malignancy in canine subcutaneous and cutaneous masses using machine learning,” Frontiers in Veterinary Science, vol. 10, article no. 1109188, 2023. DOI:10.3389/fvets.2023.1109188DOI
8 
E. Goceri, “Diagnosis of skin diseases in the era of deep learning and mobile technology,” Computers in Biology and Medicine, vol. 134, no. 104458, 2021. DOI:10.1016/j.compbiomed.2021.104458DOI
9 
AI HUB, “Pet skin disease data,” https://www.aihub.or.kr/aihubdata/dataURL
10 
E. D. Cubuk, B. Zoph, J. Shlens and Q. V. Le, “Randaugment: Practical automated data augmentation with a reduced search space,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702-703, 2020.URL
11 
P. Chen, S. Liu, H. Zhao, and J. Jia, “Gridmask data augmentation,” arXiv preprint arXiv:2001.04086, 2020. DOI:10.48550/arXiv.2001.04086URL
12 
J. H. Lee, J. W. Chae, and H. C. Cho, “Improved classification of different brain tumors in MRI scans using Patterned-GridMask,” IEEE Access, 2024. DOI:10.1109/ACCESS.2024.3377105DOI
13 
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, ... and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.URL
14 
I. Loshchilov, and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017. DOI:10.48550/arXiv.1711.05101URL
15 
D. P. Kingma, and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. DOI:10.48550/arXiv.1412.6980URL