KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2025-01
(Vol.74 No.01)
10.5370/KIEE.2025.74.1.164
Journal XML
XML
PDF
INFO
REF
References
1
Liangkai Liu et al., “Computing Systems for Autonomous Driving: State-of-the-Art and Challenges,” IEEE Internet Things, vol. 8, no. 8, pp. 6469–6486, 2021. DOI: 10.48550/arXiv.2009.14349
2
Xuan Wang et al., “Multi-Sensor Fusion Technology for 3D Object Detection in Autonomous Driving: A Review,” IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 2, pp. 1148-1165, 2024. DOI: 10.1109/TITS.2023.3317372
3
E. DANDIL, and K. K. ÇEVİK, “Computer Vision Based Distance Measurement System using Stereo Camera View,” 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1-4, 2019. DOI: 10.1109/ISMSIT.2019.8932817
4
J. Redmon, and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517-6525, 2017. DOI: 10.1109/CVPR.2017.690
5
A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark suite,” 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354-3361, 2012. DOI: 10.1109/CVPR.2012.6248074
6
H. Kim, and S. Park, “Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning,” The Journal of Korea Robotics Society, vol. 14, no. 4, pp. 357–362, 2019. DOI: 10.7746/jkros.2019.14.4.357
7
A. Masoumian et al., “Absolute distance prediction based on deep learning object detection and monocular depth estimation models,” Artificial Intelligence Research and Development, pp. 325-334, 2021. DOI: 10.3233/FAIA210151
8
N. Carion et al., “End-to-End object detection with Transformers,” Computer Vision – ECCV 2020, vol. 12346, pp. 213–229, 2020. DOI: 10.1007/978-3-030-58452-8_13
9
Tianqi Chen, and Carlos Guestrin, “Xgboost: A scalable tree boosting system,” arXiv, 2016. DOI: 10.48550/arXiv.1603.02754
10
Seungyoo Lee et al., “Vehicle Distance Estimation from a Monocular Camera for Advanced Driver Assistance Systems,” Symmetry, vol. 14, no. 12, 2657, 2022. DOI: 10.3390/sym14122657
11
Yang, Lihe et al., “Depth Anything V2,” arXiv, 2024. DOI: 10.48550/arXiv.2406.09414
12
Yang, Lihe, and Kang et al., “Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data,” 2024 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10371-10381, 2024. DOI: 10.48550/arXiv.2401.10891
13
S. Song et al., “SUN RGB-D: A RGB-D scene understanding benchmark suite,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 567-576, 2015. DOI: 10.1109/CVPR.2015.7298655
14
T. Koch et al., “Evaluation of CNN-based Single-Image Depth Estimation Methods,” Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018. DOI: 10.48550/arXiv.1805.01328
15
Roberts, Mike, and Nathan Paczan, “Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10912-10922, 2021. DOI: 10.48550/arXiv.2011.02523
16
Yohann Cabon, Naila Murray, and Martin Humenberger, “Virtual kitti 2,” arXiv, 2020. DOI: 10.48550/arXiv.2001.10773
17
Vasiljevic et al., “DIODE: A Dense Indoor and Outdoor DEpth Dataset,” arXiv, 2019. DOI: 10.48550/arXiv.1908.00463
18
Shariq Farooq Bhat et al., “Zoedepth: Zero-shot transfer by combining relative and metric depth,” arXiv, 2023. DOI: 10.48550/arXiv.2302.12288
19
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788, 2016. DOI: 10.1109/CVPR.2016.91
20
Z. Zou et al., “Object Detection in 20 Years: A Survey,” in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, 2023. DOI: 10.1109/JPROC.2023.3238524
21
P. Jiang et al., “A Review of YOLO Algorithm Developments,” Procedia Computer Science, vol. 199, pp. 1066-1073, 2022. DOI: 10.1016/j.procs.2022.01.135
22
Lin, TY et al., “Microsoft COCO: Common Objects in Context,” Computer Vision – ECCV 2014, vol 8693, pp. 740-755, 2014. DOI: 10.1007/978-3-319-10602-1_48
23
NVIDIA, “NVIDIA Jetson Orin”, https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
24
stereolabs, “stereolabs Docs: API Reference, Tutorials, and Integration”, https://www.stereolabs.com/docs