• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Ding , Guoping , Sandtner Jan, Bleuler Hannes, 2015, A novel flexible PCB conductive structure for electro- dynamic bearings and measurement in its induced voltage., Technology, Vol. 10, No. 5, pp. 2001-2008DOI
2 
Song Kyo-D, Kim Jae-Hwan, Yang Sang-Yeol, Oh PK, 2012, Flexible patch rectennas for wireless actuation of cellulose electro-active paper actuator., Journal of Electrical Engineering and Technology, Vol. 7, No. 6, pp. 954-958DOI
3 
Geetha G., et al. , 2018, Compact and Flexible Monopole Antenna for Ultra-Wideband Applications Deploying Fractal Geometry, Journal of Electrical Engineering Technology, Vol. 13, No. 1, pp. 400-405DOI
4 
Cho I. -J, Lee H. -K, Chang S. -I, Yoon E., 2017, Compliant ultrasound proximity sensor for the safe operation of human friendly robots integrated with tactile sensing capability, Journal of Electrical Engineering and Technology, Vol. 12, No. 1, pp. 310-316DOI
5 
Madaria A. R., Kumar A., Zhou C., 2017, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens, Nanotechnology, Vol. 22, No. 24, pp. 1-7DOI
6 
Choi S., Lee H., Ghaffari R., Hyeon T., Kim D. H., 2016, Recent Advances in Flexible and Stretchable Bioelectronic Devices Integrated with Nanomaterials, Advanced Materials, Vol. 28, No. 22, pp. 4203-4218DOI
7 
Meng Y., Zhao Y., Hu C., Cheng H., Hu Y., Zhang Z, Qu L, 2013, 제목, Advanced materials, Vol. 25, No. 16, pp. 2326-2331DOI
8 
Gomez De Arco, Zhang L., Schlenker Y., Ryu C. W., Thompson K., E. M. , Zhou C, 2010, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS nano, Vol. 4, No. 5, pp. 2865-2873DOI
9 
Lee H., Kim I., Kim M., Lee H, 2016, Moving beyond flexible to stretchable conductive electrodes using metal nanowires and graphenes, Nanoscale, Vol. 8, No. 4, pp. 1789-1822DOI
10 
, , and , “”, , vol. no. , pp. -, . 이름, Lötters J. C., Olthuis W., Veltink P. H., Bergveld P, 1997, The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications, Journal of micromechanics and microengineering, Vol. 7, No. 3, pp. 145-147Google Search
11 
Bhagat A. A. S., Jothimuthu P., Papautsky PK, 2007, Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototypin, Lab on a Chip, Vol. 7, No. 9, pp. 1192-1197DOI
12 
Joo Chuan Kenry, Y., L Chwee Teck, 2016, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications, Microsystems & nanoenegineering, Vol. 2, No. 16043, pp. 1-19DOI
13 
Saleem K., Leandro L., Ravinder S. D., 2015, Technologies for Printing Sensors and Electronics Over Large Flexible Substrat: A Review, IEEE Sensors Journal, Vol. 15, No. 6, pp. 3164-3185Google Search
14 
Kim N., Kee S., Lee S. H., Lee B. H., Kahng Y. H., Jo Y. R., Lee K., 2014, Highly Conductive PEDOT: PSS Nanofibrils Induced by Solution‐Processed Crystallization, Advanced materials, Vol. 26, No. 14, pp. 2268-2272DOI
15 
Kim PK, Zhao Y., Kim J. M., Kim K. S., Hong B. H., 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, nature, Vol. 457, No. 7230, pp. 706-710DOI
16 
Lee S., No I. J., Shin P. K., Kim Y., 2013, Capacitance and Output Current Control by CNT Concentration in the CNT/PVDF Composite Films for Electronic Devices, Transactions of the Korean Institute of Electrical Engineers, Vol. 62, No. 8, pp. 1115-1119DOI
17 
Yang L., Zhang T., Zhou H., Price S. C., Wiley B. J., You W., 2011, Solution-processed flexible polymer solar cells with silver nanowire electrodes, ACS applied materials&interfaces, Vol. 3, No. 10, pp. 4075-4084DOI
18 
Ferrari A. C., Bonaccorso F., Fal'Ko V., Novoselov K. S. , Roche S., Bøggild P., Garrido J. A., 2015, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale, Vol. 7, No. 11, pp. 4598-4810DOI
19 
Bonaccorso F., Sun Z., Hasan T., Ferrari A. C., 2010, Graphene photonics and optoelectronics, Nature photonics, Vol. 4, No. 9, pp. 611-622DOI
20 
Pinto A. M., Goncalves I. C., Magalhães F. D., 2013, Graphene-based materials biocompatibility: a review, Colloids and Surfaces B: Biointerfaces, Vol. 111, No. , pp. 188-202DOI
21 
Han S., Wu D., Li S., Zhang F. and Feng X., 2013, Graphene: a two-dimensional platform for lithium storage, Small, Vol. 9, No. 8, pp. 1173-1187DOI
22 
Shi J. L., Peng H. J., Zhu L., Zhu W., d Zhang Q., 2015, Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium-sulfur batteries, Carbon, Vol. 92, No. , pp. 96-105DOI
23 
Zheng C., Zhou X., Cao H., Wang G., Liu Z., 2014, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material, Journal of power sources, Vol. 258, No. , pp. 290-296DOI
24 
Lin J., Peng Z., Liu Y., Ruiz-Zepeda F., Ye R., Samuel E. L., Tour J. M., 2014, Laser-induced porous graphene films from commercial polymers, Nature communications, Vol. 5, No. 5714, pp. 1-8DOI
25 
Rouzbeh K., Kim W. S., 2014, Flexible temperature sensor with laser scribed graphene oxide, Nanotechnology (IEEE-NANO), Vol. 2014 IEEE 14th International Conference on. IEEE, No. , pp. 420-423DOI
26 
Tehrani F., Bavarian B., 2016, Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose, Scientific reports, Vol. 6, No. 27975, pp. 1-10DOI
27 
Clerici F., Fontana M., Bianco S., Serrapede M., Perrucci F., Ferrero S., Lamberti A., 2016, In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes, ACS applied materials & interfaces, Vol. 8, No. 16, pp. 10459-10465DOI
28 
Dreyfus R. W., 1992, CN temperatures above laser ablated polyimide, Applied Physics A: Materials Science&Processing, Vol. 55, No. 4, pp. 335-339DOI
29 
Mansour Ahmed., 2011, Structural Analysis of Planar sp3 and sp2 Films: Diamond-Like Carbon and Graphene Overlayers, Diss, Vol. , No. , pp. -DOI
30 
Bott A. W. and Jackson B. P., 1996, Study of ferricyanide by cyclic voltammetry using the CV-50W, Current Separations, Vol. 15, No. , pp. 25-30DOI