• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. C. Kim, S. J. Lee, Jun 2019, A Lecture Note for Introduction of Steiner (Fermat) Tree to Electrical Engineering Education, Journal of KIIEE, Vol. 33, No. 6, pp. 9-18Google Search
2 
J. C. Tong, Y. S. Chua, June 1995, The Generalized Fermat’s Point, Mathematics Magazine, Vol. 68Google Search
3 
R. Courant, H. Robbins, 1941, What is Mathematics?, New York, pp. 354-360Google Search
4 
T. W. Ruijgrok, 1984, The exact solution of a three-body problem, European Journal of Physics, No. 5, pp. 21-24Google Search
5 
S. D. Yang, W. K. Lyu, S. J. Lee, Sep 2008, Optimal Location of Mail Distribution Center using Steiner Tree, Journal of KIIEE, Vol. 22, No. 9, pp. 82-87DOI
6 
G. Grewal, 2004, A New Algorithm for Quickly Growing Highly-Quality Steiner Tree, Proc. 17th International Conference on VLSI Design (VLSI'04), 2004 ieee computer society, pp. 1576-1579Google Search
7 
S. Lee, J. Yoon, J. Kim, Sep 2010, Cost reduction thru shortest path connection of power line, KIIEE ConferenceGoogle Search
8 
G. Q. Lee, J. C. Kim, S. J. Lee, Nov 2018, Line length reduction using Fermat/Steiner Point, in 2018 KIIEE Fall Conference, pp. 24Google Search
9 
G. Q. Lee, S. J. Lee, Dec 2014, Two Ways of Shortest Connection for Right-Angled Three Points and Comparison of Length by Mathematical Proof, in KIIEE Smart Grid Conference, pp. 146-147Google Search
10 
https://search.yahoo.com/search?p=steiner+tree&fr=yfp-t-s&fp =1&toggle=1&cop=mss&ei=UTF-8, accessed on Aug 4, 2019.Google Search