KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2019-10
(Vol.68 No.10)
10.5370/KIEE.2019.68.10.1214
Journal XML
XML
PDF
INFO
REF
References
1
A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, D. Riu, November 2013, A review on lithium-ion battery ageing mechanisms and estimations for automotive ap- plications, Journal of Power Sources, Vol. 241, pp. 680-689
2
T. Kodama, H. Sakaebe, September 1999, Present status and future prospect for national project on lithium batteries, Journal of Power Sources, Vol. 81, pp. 144-149
3
L. Su, J. Zhang, C. Wang, Y. Zhang, Z. Li, Y. Song, Z. Ma, February 2016, Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experi- ments, Applied Energy, Vol. 163, pp. 201-210
4
X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, Z. Li, April 2014, A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identi- fication, Journal of Power Sources, Vol. 251, pp. 38-54
5
M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. van Mierlo, P. van den Bossche, April 2016, Critical review of state of health estimation methods of Li-ion batteries for real applications, Renewable and Sustainable Energy Reviews, Vol. 56, pp. 572-587
6
H. Chaoui, C. C. Ibe-Ekeocha, June 2017, State of charge and state of health estimation for lithium batteries using re- current neural networks, IEEE Transactions on Vehicular Technology, Vol. 66, No. 10, pp. 8773-8783
7
A. Nuhic, T. Terzimehic, T. Soczka-Guth, M. Buchholz, K. Dietmayer, October 2013, Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods, Journal of Power Sources, Vol. 239, pp. 680-688
8
R. Xiong, L. Li, J. Tian, November 2018, Towards a smarter battery management system: a critical review on battery state of health monitoring methods, Journal of Power Sources, Vol. 405, pp. 18-29
9
Y. Zhang, C. Y. Wang, X. Tang, 2011, Cycling degradation of an automotive LiFePO4 lithium-ion battery, Journal of Power Sources, Vol. 196, No. 3, pp. 1513-1520
10
Y. Gao, J. Jiang, C. Zhang, W. Zhang, Y. Jiang, October 2018, Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li (NiMnCo) O2 cathode, Journal of Power Sources, Vol. 400, pp. 641-651
11
A. S. Mussa, M. Klett, M. Behm, G. Lindbergh, R. W. Lindström, October 2017, Fast-charging to a partial state of charge in lithium-ion batteries: A comparative ageing study, Journal of Energy Storage, Vol. 13, pp. 325-333
12
S. S. Zhang, October 2006, The effect of the charging protocol on the cycle life of a Li-ion battery, Journal of Power Sources, Vol. 161, No. 2, pp. 1385-1391
13
K. Pearson, 1895, Notes on Regression and Inheritance in the Case of Two Parents, Proceedings of the Royal Society of London, Vol. 58, pp. 240-242
14
Q. Lyu, J. Zhu, December 2014 publish- ed, Revisit long short-term memory:, in Advances in Neural Informa- tion Processing Systems Workshop on Deep Learning and Representation Learning, pp. 1-9