• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
J. Buitrago, S. Asfour, Jan 2017, Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs, Energies, Vol. 10, pp. 1-24DOI
2 
B. H. Koo, H. S. Kim, H. S. Lee, J. H. Park, 2015, Short- term electric load forecasting for summer season using temperature data, Trans. KIEE, Vol. 64, pp. 1137-1144DOI
3 
S. W. Jo, B. S. Kwon, K. B. Song, 2019, Day ahead 24- hours load forecasting algorithm using latest weather forecasting, Trans. KIEE, Vol. 68, pp. 416-422Google Search
4 
D. H. Kim, H. J. Jo, M. S. Kim, J. H. Roh, J. B. Park, 2019, Short-term load forecasting based on deep learning model, Trans. KIEE, Vol. 68, pp. 1094-1099Google Search
5 
C. H. Kim, Mar 2013, Analysis of the daily and hourly power load patterns, Korea Energy Economics Institute Research PaperGoogle Search
6 
C. H. Kim, Dec 2014, A study of mixed data sampling(MIDAS) model for electricity demand forecasting, Korea Energy Economics Institute Research PaperGoogle Search
7 
K. Kandananond, Aug 2011, Forecasting electricity demand in Thailand with an artificial neural network approach, Energies, Vol. 4, pp. 1246-1257DOI
8 
Y. C. Jung, 2016, Utilization strategy of big data for official statistics, Korea Information Society Developmnet Institute (KISDI)Google Search
9 
S. M. Gorade, A. Deo, P. Purohit, Apr 2017, A study of some data mining classification techniques, International Research Journal of Engineering and Technology (IRJET), Vol. 04, pp. 3112-3115Google Search
10 
C. H. Kim, 2013, Estimating short-term load forecasting in Korea using multiple exponential smoothing, The Korea Electro- technology Research Institute (KERI)Google Search
11 
C. H. Kim, Jun 2013, Study on within-week and within-day seasonal patterns of electricity demand in Korea, Korea Energy Economics Institute Policy Issue PaperGoogle Search
12 
J. H. Moon, J. W. Park, S. H. Han, E. J. Hwang, Sept 2017, Power consumption forecasting scheme for educational institutions based on analysis of similar time series data, Journal of KIISE, Vol. 44, pp. 954-965DOI
13 
Korea Electric Power Corporation, Jan 2009, Developmnet of integrated demand management portal based on demand forecastingGoogle Search
14 
S. B. Roh, S. K. Oh, Aug 2018, Design of SVM-based polynomial neural networks classifier using particle swarm, Trans. KIEE, Vol. 67, pp. 1071-1079DOI
15 
S. R. Salkuti, Dec 2018, Short-term electrical load forecasting using hybrid ANN-DE and wavelet transforms approach, Electrical Engineering, Vol. 100, pp. 2755-2763DOI
16 
J. Han, M. Kamber, 2001, Data mining: concepts and techniques, Morgan Kaufmann PublishersGoogle Search
17 
S. H. Kwon, J. W. Lee, G. H. Chung, 2017, Snow damages estimation using artificial neural network and multiple regression analysis, Journal of the Korean Society of Hazard Mitigation, Vol. 17, pp. 315-325DOI
18 
Simon Haykin, 2004, Feedforward neural networks : an introductionGoogle Search
19 
M. K. Kim, July 2015, A new approach to short-term price forecast strategy with an artificial neural network approach: application to the Nord pool, Journal of Electrical Engineering & Technology, Vol. 10DOI
20 
J. N. Hwang, S. Y. Kung, M. Niranjan, J. C. Principe, 1997, The past,present,and future of neural networks for signal processing, IEEE Signal Processing Magazine, Vol. 14, pp. 28-48DOI
21 
P. Priyadarshi, Mar 2019, Rprop and improved Rprop+ based constant modulus type (RCMT) blind channel equalization algorithm for QAM signal, Journal of Information and Optimization Sciences, Vol. 40, pp. 351-366DOI
22 
ASOS data set, Korea Meteorological AgencyGoogle Search
23 
Exchange rates, oil price, and power load data, Korean Statistical Information Service, OpenAPIGoogle Search