KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2020-08
(Vol.69 No.8)
10.5370/KIEE.2020.69.8.1165
Journal XML
XML
PDF
INFO
REF
References
1
Ministry of Trade, Industry and Energy, http://motie.go.kr/common/download.do?fid=bbs&bbs_cd_n=81&bbs_seq_n=159996&file_seq_n=2
2
Ministry of Trade, Industry and Energy, https://motie.go.kr/common/download.do?fid=bbs&bbs_cd_n=81&bbs_seq_n=158705&file_seq_n=1
3
Eunmi Lee, Daeseok Rho, Changho Park, 2004, A study on the Optimal Operation of Step Voltage Regulator (SVR) in the Distribution Feeders, The Korean Institute of Electrical Engineers
4
Y. Kubota, T. Genji, 2007, Finding Optimal SVR Placement in Distribution Systems Using Power Dedsity Model, Electrical Engineering in Japan, Vol. 1584, No. 4, pp. 11-21
5
W. H. Kersting, 2010, Distribution Feeder Voltage Regulation Control, IEEE Transactions on Industry Applications, Vol. 46, No. 2
6
W. H. Kersting, 2009, The Modeling and Application of Step Voltage Regulators, IEEE
7
Aqdas Naz, Muhammad Umar Javed, Nadeem Javaid, Tanzila Saba, Musaed Alhussein, Khursheed Aurangzeb, 2019, Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids, Energies
8
Y. Kemmoku, S. Orita, S. Nakagawa, T. Sakakibara, 1999, Daily insolation forecasting using a multi-stage neural network, Solar Energy
9
S. Srivastava, S. Lessmann, 2018, A comparative study of LSTM neural networks in forecasting day ahead global horizontal irradiance with satellite data, Solar Energy
10
C. Paoli, C. Voyant, M. Musselli, M. L. Nivet, 2010, Forecasting of preprocessed daily solar radiation time series using neural networks, Solar Energy, Vol. 84, pp. 2146-2160
11
G. Wang, Y. Su, L. Shu, 2016, One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models, Renewable Energy, Vol. 96, pp. 469-478
12
Y. Yu, J. Cao, J. Zhu, 2019, An LSTM Short-Term Solar Irradiance Forecasting Under Complicated Weather Conditions, IEEE Access, Vol. 7, pp. 145651-145666
13
Jifri, Mohammad Hanif, 2017, Macro-Factor Affecting the Electricity Load Demand in Power System
14
A. Moreno, M. A. Gilabert, B. Martinez, 2011, Mapping daily global solar irradiation over Spain: A comparative study of selected approaches, Solar Energy, Vol. 85, pp. 2072-2084
15
Munir Husein, Il-Yop Chung, 2019, Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach, Energies, Vol. 12, 1856
16
M. H. K. Tushar, C. Assi, M. Maier, M. F. Uddin, 2014, Smart microgrids: Optimal joint scheduling for electric vehicles and home appliances, IEEE Transactions on Smart Grid, Vol. 5, pp. 239-250
17
KEPCO, 154kV/PowerTransformer, GS6120-0028
18
Hyun-Koo Kang, 2019, Assessment of Distributed Generation Hosting Capacity Considering Steady-state Voltage Problem, in KIEE Conference
19
J. A. Duffie, W. A. Beckman, 2013, Solar Engineering of Thermal Process, John Wiley & Sons
20
EPRI, openDSS, https://sourceforge.net/projects/electricdss/
21
Mathworks, https://kr.mathworks.com/