• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Ministry of Trade, Industry and Energy, http://motie.go.kr/common/download.do?fid=bbs&bbs_cd_n=81&bbs_seq_n=159996&file_seq_n=2Google Search
2 
Ministry of Trade, Industry and Energy, https://motie.go.kr/common/download.do?fid=bbs&bbs_cd_n=81&bbs_seq_n=158705&file_seq_n=1Google Search
3 
Eunmi Lee, Daeseok Rho, Changho Park, 2004, A study on the Optimal Operation of Step Voltage Regulator (SVR) in the Distribution Feeders, The Korean Institute of Electrical EngineersGoogle Search
4 
Y. Kubota, T. Genji, 2007, Finding Optimal SVR Placement in Distribution Systems Using Power Dedsity Model, Electrical Engineering in Japan, Vol. 1584, No. 4, pp. 11-21DOI
5 
W. H. Kersting, 2010, Distribution Feeder Voltage Regulation Control, IEEE Transactions on Industry Applications, Vol. 46, No. 2DOI
6 
W. H. Kersting, 2009, The Modeling and Application of Step Voltage Regulators, IEEEDOI
7 
Aqdas Naz, Muhammad Umar Javed, Nadeem Javaid, Tanzila Saba, Musaed Alhussein, Khursheed Aurangzeb, 2019, Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids, EnergiesDOI
8 
Y. Kemmoku, S. Orita, S. Nakagawa, T. Sakakibara, 1999, Daily insolation forecasting using a multi-stage neural network, Solar EnergyDOI
9 
S. Srivastava, S. Lessmann, 2018, A comparative study of LSTM neural networks in forecasting day ahead global horizontal irradiance with satellite data, Solar EnergyDOI
10 
C. Paoli, C. Voyant, M. Musselli, M. L. Nivet, 2010, Forecasting of preprocessed daily solar radiation time series using neural networks, Solar Energy, Vol. 84, pp. 2146-2160DOI
11 
G. Wang, Y. Su, L. Shu, 2016, One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models, Renewable Energy, Vol. 96, pp. 469-478DOI
12 
Y. Yu, J. Cao, J. Zhu, 2019, An LSTM Short-Term Solar Irradiance Forecasting Under Complicated Weather Conditions, IEEE Access, Vol. 7, pp. 145651-145666DOI
13 
Jifri, Mohammad Hanif, 2017, Macro-Factor Affecting the Electricity Load Demand in Power SystemGoogle Search
14 
A. Moreno, M. A. Gilabert, B. Martinez, 2011, Mapping daily global solar irradiation over Spain: A comparative study of selected approaches, Solar Energy, Vol. 85, pp. 2072-2084DOI
15 
Munir Husein, Il-Yop Chung, 2019, Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach, Energies, Vol. 12, 1856DOI
16 
M. H. K. Tushar, C. Assi, M. Maier, M. F. Uddin, 2014, Smart microgrids: Optimal joint scheduling for electric vehicles and home appliances, IEEE Transactions on Smart Grid, Vol. 5, pp. 239-250DOI
17 
KEPCO, 154kV/PowerTransformer, GS6120-0028Google Search
18 
Hyun-Koo Kang, 2019, Assessment of Distributed Generation Hosting Capacity Considering Steady-state Voltage Problem, in KIEE ConferenceGoogle Search
19 
J. A. Duffie, W. A. Beckman, 2013, Solar Engineering of Thermal Process, John Wiley & SonsGoogle Search
20 
EPRI, openDSS, https://sourceforge.net/projects/electricdss/Google Search
21 
Mathworks, https://kr.mathworks.com/Google Search