KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2022-01
(Vol.71 No.1)
10.5370/KIEE.2022.71.1.035
Journal XML
XML
PDF
INFO
REF
References
1
R. N. Allan, B. Borkowska, C. H. Grigg, 1974, Pro- babilistic analysis of power flows, Proceedings of the Institution of Electrical Engineers, IET, Vol. 121, No. 12, pp. 1551-1556
2
Juan M. Morales, 2010, Probabilistic power flow with correlated wind sources, IET generation, transmission & distribution, Vol. 4, No. 5, pp. 641-651
3
J. M. Morales, J. Perez-Ruiz, Nov 2007, Point Estimate Schemes to Solve the Probabilistic Power Flow, IEEE Transactions on Power Systems, Vol. 22, No. 4, pp. 1594-1601
4
M. Hajian, W. D. Rosehart, H. Zareipour, May 2013, Probabilistic Power Flow by Monte Carlo Simulation With Latin Super- cube Sampling, IEEE Transactions on Power Systems, Vol. 28, No. 2, pp. 1550-1559
5
S. Song, C. Han, S. Jung, M. Yoon, G. Jang, 2019, Pro- babilistic Power Flow Analysis of Bulk Power System for Practical Grid Planning Application, IEEE Access, Vol. 7, pp. 45494-45503
6
D. Villanueva, J. L. Pazos, A. Feijoo, Aug 2011, Probabilistic Load Flow Including Wind Power Generation, IEEE Transactions on Power Systems, Vol. 26, No. 3, pp. 1659-1667
7
Piotr Wais, 2017, Two and three-parameter Weibull distribution in available wind power analysis, Renewable energy, Vol. 103, pp. 15-29
8
Nan Yang, 2019, Adaptive nonparametric kernel density estimation approach for joint probability density function modeling of multiple wind farms, Energies, Vol. 12, No. 7, pp. 1356
9
Yibin Qiu , 2019, A scenario generation method based on the mixture vine copula and its application in the power system with wind/hydrogen production, International Journal of Hydrogen Energy, Vol. 44, No. 11, pp. 5162-5170
10
Z. Q. Xie, T. Y. Ji, M. S. Li, Q. H. Wu, March 2018, Quasi- Monte Carlo Based Probabilistic Optimal Power Flow Considering the Correlation of Wind Speeds Using Copula Function, IEEE Transactions on Power Systems, Vol. 33, No. 2, pp. 2239-2247
11
Hagspiel, Simeon, al. et, 2012, Copula-based modeling of stocha- stic wind power in Europe and implications for the Swiss power grid, Applied energy, Vol. 96, pp. 33-44
12
A. Lojowska, D. Kurowicka, G. Papaefthymiou, L. van der Sluis, Nov 2012, Stochastic Modeling of Power Demand Due to EVs Using Copula, IEEE Transactions on Power Systems, Vol. 27, No. 4, pp. 1960-1968
13
Oliver Grothe, Schnieders Julius , 2011, Spatial dependence in wind and optimal wind power allocation: A copula-based analysis, Energy policy, Vol. 39, No. 9, pp. 4742-4754
14
M. Sun, I. Konstantelos, G. Strbac, May 2017, C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data, IEEE Transactions on Power Systems, Vol. 32, No. 3, pp. 2382-2393
15
Z. Wang, W. Wang, C. Liu, Z. Wang, Y. Hou, Jan 2018, Pro- babilistic Forecast for Multiple Wind Farms Based on Regular Vine Copulas, in IEEE Transactions on Power Systems, Vol. 33, No. 1, pp. 578-589
16
Harry Joe, 1996, Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters, Lecture Notes-Monograph Series, pp. 120-141
17
Tim Bedford, Cooke Roger M., 2002, Vines--a new graphical model for dependent random variables, The Annals of Statistics, Vol. 30, No. 4, pp. 1031-1068
18
Katzenstein, Warren, Fertig Emily, Apt Jay, 2010, The varia- bility of interconnected wind plants, Energy policy, Vol. 38, No. 8, pp. 4400-4410
19
Allen J. Wood, Bruce F. Wollenberg, 2013, Power generation, operation, and control, John Wiley & Sons