• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
R. N. Allan, B. Borkowska, C. H. Grigg, 1974, Pro- babilistic analysis of power flows, Proceedings of the Institution of Electrical Engineers, IET, Vol. 121, No. 12, pp. 1551-1556Google Search
2 
Juan M. Morales, 2010, Probabilistic power flow with correlated wind sources, IET generation, transmission & distribution, Vol. 4, No. 5, pp. 641-651DOI
3 
J. M. Morales, J. Perez-Ruiz, Nov 2007, Point Estimate Schemes to Solve the Probabilistic Power Flow, IEEE Transactions on Power Systems, Vol. 22, No. 4, pp. 1594-1601DOI
4 
M. Hajian, W. D. Rosehart, H. Zareipour, May 2013, Probabilistic Power Flow by Monte Carlo Simulation With Latin Super- cube Sampling, IEEE Transactions on Power Systems, Vol. 28, No. 2, pp. 1550-1559DOI
5 
S. Song, C. Han, S. Jung, M. Yoon, G. Jang, 2019, Pro- babilistic Power Flow Analysis of Bulk Power System for Practical Grid Planning Application, IEEE Access, Vol. 7, pp. 45494-45503DOI
6 
D. Villanueva, J. L. Pazos, A. Feijoo, Aug 2011, Probabilistic Load Flow Including Wind Power Generation, IEEE Transactions on Power Systems, Vol. 26, No. 3, pp. 1659-1667DOI
7 
Piotr Wais, 2017, Two and three-parameter Weibull distribution in available wind power analysis, Renewable energy, Vol. 103, pp. 15-29DOI
8 
Nan Yang, 2019, Adaptive nonparametric kernel density estimation approach for joint probability density function modeling of multiple wind farms, Energies, Vol. 12, No. 7, pp. 1356DOI
9 
Yibin Qiu , 2019, A scenario generation method based on the mixture vine copula and its application in the power system with wind/hydrogen production, International Journal of Hydrogen Energy, Vol. 44, No. 11, pp. 5162-5170DOI
10 
Z. Q. Xie, T. Y. Ji, M. S. Li, Q. H. Wu, March 2018, Quasi- Monte Carlo Based Probabilistic Optimal Power Flow Considering the Correlation of Wind Speeds Using Copula Function, IEEE Transactions on Power Systems, Vol. 33, No. 2, pp. 2239-2247DOI
11 
Hagspiel, Simeon, al. et, 2012, Copula-based modeling of stocha- stic wind power in Europe and implications for the Swiss power grid, Applied energy, Vol. 96, pp. 33-44DOI
12 
A. Lojowska, D. Kurowicka, G. Papaefthymiou, L. van der Sluis, Nov 2012, Stochastic Modeling of Power Demand Due to EVs Using Copula, IEEE Transactions on Power Systems, Vol. 27, No. 4, pp. 1960-1968DOI
13 
Oliver Grothe, Schnieders Julius , 2011, Spatial dependence in wind and optimal wind power allocation: A copula-based analysis, Energy policy, Vol. 39, No. 9, pp. 4742-4754DOI
14 
M. Sun, I. Konstantelos, G. Strbac, May 2017, C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data, IEEE Transactions on Power Systems, Vol. 32, No. 3, pp. 2382-2393DOI
15 
Z. Wang, W. Wang, C. Liu, Z. Wang, Y. Hou, Jan 2018, Pro- babilistic Forecast for Multiple Wind Farms Based on Regular Vine Copulas, in IEEE Transactions on Power Systems, Vol. 33, No. 1, pp. 578-589DOI
16 
Harry Joe, 1996, Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters, Lecture Notes-Monograph Series, pp. 120-141Google Search
17 
Tim Bedford, Cooke Roger M., 2002, Vines--a new graphical model for dependent random variables, The Annals of Statistics, Vol. 30, No. 4, pp. 1031-1068DOI
18 
Katzenstein, Warren, Fertig Emily, Apt Jay, 2010, The varia- bility of interconnected wind plants, Energy policy, Vol. 38, No. 8, pp. 4400-4410DOI
19 
Allen J. Wood, Bruce F. Wollenberg, 2013, Power generation, operation, and control, John Wiley & SonsGoogle Search