• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Barbose, L Galen, 2021, US Renewables Portfolio Standards 2021 Status Update: Early Release, Lawrence Berkeley National Lab.(LBNL), Vol. berkeley, No. CA (United States)DOI
2 
2021, American Clean Power Market Report Fourth Quarter 2020, American Clean PowerGoogle Search
3 
Aien, Morteza, Reza Ramezani, S. Mohsen Ghavami, 2011, Probabilistic load flow considering wind generation uncertainty, Engineering, Technology & Applied Science Research, Vol. 1, No. 5, pp. 126-132DOI
4 
Borkowska, Barbara, 1974, Probabilistic load flow, IEEE Transactions on Power Apparatus and Systems, Vol. 3, pp. 752-759DOI
5 
Chen, Peiyuan, Chen Zhe, Bak-Jensen Birgitte, 2008, Probabilistic load flow: A review, 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. IEEEDOI
6 
Villanueva, Daniel, Luis Pazos José, Feijoo Andrés, 2011, Probabilistic load flow including wind power generation, IEEE Transactions on Power Systems, Vol. 26, No. 3, pp. 1659-1667DOI
7 
J. M. Morales, J. Perez-Ruiz, Nov 2007, Point Estimate Schemes to Solve the Probabilistic Power Flow, IEEE Transactions on Power Systems, Vol. 22, No. 4, pp. 1594-1601DOI
8 
Fu, Qiang, Yu David, Ghorai Jugal, 2011, Probabilistic load flow analysis for power systems with multi-correlated wind sources, 2011 IEEE power and energy society general meeting. IEEEDOI
9 
M. Hajian, W. D. Rosehart, H. Zareipour, May 2013, Probabilistic Power Flow by Monte Carlo Simulation With Latin Supercube Sampling, IEEE Transactions on Power Systems, Vol. 28, No. 2, pp. 1550-1559DOI
10 
Xiang, Mingxu, 2020, Probabilistic power flow with topology changes based on deep neural network, International Journal of Electrical Power & Energy Systems, Vol. 117DOI
11 
Grothe, Oliver, Schnieders Julius, 2011, Spatial dependence in wind and optimal wind power allocation: A copula- based analysis, Energy policy, Vol. 39, No. 9, pp. 4742-4754DOI
12 
M. Sun, I. Konstantelos, G. Strbac, May 2017, C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data, IEEE Transactions on Power Systems, Vol. 32, No. 3, pp. 2382-2393DOI
13 
Givens, R. Clark , Rae Michael Shortt, 1984, A class of Wasserstein metrics for probability distributions, Michigan Mathematical Journal, Vol. 31, No. 2, pp. 231-240DOI
14 
Condeixa, Lucas, Oliveira Fabricio, S. Siddiqui Afzal, 2020, Wasserstein-distance-based temporal clustering for capacity- expansion planning in power systems, 2020 International Conference on Smart Energy Systems and Technologies (SEST), Vol. IEEEDOI
15 
Bernton, Espen, 2019, On parameter estimation with the Wasserstein distance, Information and Inference: A Journal of the IMA, Vol. 8, No. 4, pp. 657-676DOI
16 
Oudre, Laurent, 2012, Classification of periodic activities using the Wasserstein distance, IEEE Transactions on Biomedical Engineering, Vol. 59, No. 6, pp. 1610-1619DOI
17 
Lellmann, Jan, 2014, Imaging with Kantorovich—Rubinstein Discrepancy, SIAM Journal on Imaging Sciences, Vol. 7, No. 4, pp. 2833-2859DOI
18 
Joe, Harry, 1996, Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters, Lecture Notes-Monograph Series, pp. 120-141Google Search
19 
Bedford, Tim, M. Cooke Roger, 2002, Vines--a new graphical model for dependent random variables, The Annals of Statistics, Vol. 30, No. 4, pp. 1031-1068DOI
20 
Katzenstein, Warren, Fertig Emily, Jay Apt and, 2010, The variability of interconnected wind plants, Energy policy, Vol. 38, No. 8, pp. 4400-4410DOI
21 
Wood, J. Allen , Bruce F. Wollenberg, Gerald B. Sheblé, 2013, Power generation, operation, and control., John Wiley & SonsGoogle Search