KIEE
The Transactions of
the Korean Institute of Electrical Engineers
KIEE
Contact
Open Access
Monthly
ISSN : 1975-8359 (Print)
ISSN : 2287-4364 (Online)
http://www.tkiee.org/kiee
Mobile QR Code
The Transactions of the Korean Institute of Electrical Engineers
ISO Journal Title
Trans. Korean. Inst. Elect. Eng.
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
편집위원회
Editorial Board
윤리강령
Ethics Code
논문투고안내
Instructions to Authors
연락처
Contact Info
논문투고·심사
Submission & Review
Journal Search
Home
Archive
2022-07
(Vol.71 No.7)
10.5370/KIEE.2022.71.7.921
Journal XML
XML
PDF
INFO
REF
References
1
Barbose, L Galen, 2021, US Renewables Portfolio Standards 2021 Status Update: Early Release, Lawrence Berkeley National Lab.(LBNL), Vol. berkeley, No. CA (United States)
2
2021, American Clean Power Market Report Fourth Quarter 2020, American Clean Power
3
Aien, Morteza, Reza Ramezani, S. Mohsen Ghavami, 2011, Probabilistic load flow considering wind generation uncertainty, Engineering, Technology & Applied Science Research, Vol. 1, No. 5, pp. 126-132
4
Borkowska, Barbara, 1974, Probabilistic load flow, IEEE Transactions on Power Apparatus and Systems, Vol. 3, pp. 752-759
5
Chen, Peiyuan, Chen Zhe, Bak-Jensen Birgitte, 2008, Probabilistic load flow: A review, 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. IEEE
6
Villanueva, Daniel, Luis Pazos José, Feijoo Andrés, 2011, Probabilistic load flow including wind power generation, IEEE Transactions on Power Systems, Vol. 26, No. 3, pp. 1659-1667
7
J. M. Morales, J. Perez-Ruiz, Nov 2007, Point Estimate Schemes to Solve the Probabilistic Power Flow, IEEE Transactions on Power Systems, Vol. 22, No. 4, pp. 1594-1601
8
Fu, Qiang, Yu David, Ghorai Jugal, 2011, Probabilistic load flow analysis for power systems with multi-correlated wind sources, 2011 IEEE power and energy society general meeting. IEEE
9
M. Hajian, W. D. Rosehart, H. Zareipour, May 2013, Probabilistic Power Flow by Monte Carlo Simulation With Latin Supercube Sampling, IEEE Transactions on Power Systems, Vol. 28, No. 2, pp. 1550-1559
10
Xiang, Mingxu, 2020, Probabilistic power flow with topology changes based on deep neural network, International Journal of Electrical Power & Energy Systems, Vol. 117
11
Grothe, Oliver, Schnieders Julius, 2011, Spatial dependence in wind and optimal wind power allocation: A copula- based analysis, Energy policy, Vol. 39, No. 9, pp. 4742-4754
12
M. Sun, I. Konstantelos, G. Strbac, May 2017, C-Vine Copula Mixture Model for Clustering of Residential Electrical Load Pattern Data, IEEE Transactions on Power Systems, Vol. 32, No. 3, pp. 2382-2393
13
Givens, R. Clark , Rae Michael Shortt, 1984, A class of Wasserstein metrics for probability distributions, Michigan Mathematical Journal, Vol. 31, No. 2, pp. 231-240
14
Condeixa, Lucas, Oliveira Fabricio, S. Siddiqui Afzal, 2020, Wasserstein-distance-based temporal clustering for capacity- expansion planning in power systems, 2020 International Conference on Smart Energy Systems and Technologies (SEST), Vol. IEEE
15
Bernton, Espen, 2019, On parameter estimation with the Wasserstein distance, Information and Inference: A Journal of the IMA, Vol. 8, No. 4, pp. 657-676
16
Oudre, Laurent, 2012, Classification of periodic activities using the Wasserstein distance, IEEE Transactions on Biomedical Engineering, Vol. 59, No. 6, pp. 1610-1619
17
Lellmann, Jan, 2014, Imaging with Kantorovich—Rubinstein Discrepancy, SIAM Journal on Imaging Sciences, Vol. 7, No. 4, pp. 2833-2859
18
Joe, Harry, 1996, Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters, Lecture Notes-Monograph Series, pp. 120-141
19
Bedford, Tim, M. Cooke Roger, 2002, Vines--a new graphical model for dependent random variables, The Annals of Statistics, Vol. 30, No. 4, pp. 1031-1068
20
Katzenstein, Warren, Fertig Emily, Jay Apt and, 2010, The variability of interconnected wind plants, Energy policy, Vol. 38, No. 8, pp. 4400-4410
21
Wood, J. Allen , Bruce F. Wollenberg, Gerald B. Sheblé, 2013, Power generation, operation, and control., John Wiley & Sons