• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
H. M. Hwang, J. B. Park, S. H. Lee, J. H. Roh, Y. G. Park, 2016, Load Forecasting and ESS Scheduling Considering the Load Pattern of Building, Trans of the KIEE, Vol. 65, No. 9, pp. 1486-1492DOI
2 
K. H. Kim, R. J. Park, S. W. Jo, K. B. Song, 2017, 24-Hour Load Forecasting Algorithm Using Artificial Neural Network in Summer Weekdays, Journal of the Korean Institute of Illuming and Electrical Installation Engineers, Vol. 31, No. 12, pp. 113-119Google Search
3 
X. Zhou, S. Yang, S. Sun, 2021, A Deep Learning model for day-ahead load forecasting taking advantage of expert knowledge, 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), pp. 1-5DOI
4 
N. A. Salim, T. K. A. Rahman, M. F. Jamaludin, M. F. Musa, 2009, Case study of Short Term Load Forecasting for weekends, 2009 IEEE Student Conference on Research and Development (SCOReD), pp. 332-335DOI
5 
K. B. Song, Y. S. Baek, D. H. Hong, G. Jang, Feb 2005, Short- term load forecasting for the holidays using fuzzy linear regression method, in IEEE Transactions on Power Systems, Vol. 20, No. 1, pp. 96-101DOI
6 
H. W. Jeong, B. H. Ku, J. M. Cha, 2016, A Study on the Weekend Load Forecasting of Jeju System by using Temperature Changes Sensitivity, Trans of the KIEE, Vol. 65, No. 5, pp. 718-723DOI
7 
Li, Bin, Lu Mingzhen, Zhang Yiyi, no 20: 3820, A Weekend Load Forecasting Model Based on Semi- Parametric Regression Analysis Considering Weather and Load Interaction, Energies 12DOI
8 
Winter Eyal, 2002, Handbook of Game Theory with Economic Applications, Vol. 3, pp. 2025-2054Google Search
9 
W. Y. Chung, S. W. Park, J. U. Moon, E. J. Hwang, Mar 2022, SHAP based Solar Power Generation Forecasting Scheme Relecting the Solar Periodic Time Variable, KIISE Transactions on Computing Practices., Vol. 28, No. 3, pp. 196-201Google Search
10 
J. H. Ahn, 2020, Explanable artificial intelligence and artificial intelligence, wikibooks Pub, Vol. ch 05, pp. 168-171Google Search
11 
H. R. Oh, A. L. Son, Z. K. Lee, Jul 2021, Occupational accident prediction modeling and analysis using SHAP, Journal of Digital Contents Society, Vol. 22, No. 7, pp. 1115-1123Google Search
12 
H. S. Son, S. Y. Kim, Y. Jang, Oct 2020, LSTM-based 24-Hour Solar Power Forecasting Model using Weather Forecast Data, KIISE Transactions on Computing Practices, Vol. 26, No. 10, pp. 435-441Google Search
13 
J. Y. Oh, D. H. Ham, Y. G. LEE, G. B. Kim, 2019, Short term Load Forecasting Using XGBoost and the Analysis of Hyperparameters, Trans of the KIEE, Vol. 68, No. 9, pp. 1073-1078Google Search
14 
J. Han, J. Baek, 2010, The Load Forecasting in Summer Considering Day Factor, The Transactions of KAIS, Vol. 11, No. 8, pp. 2793-2800DOI
15 
Y. Park, B. Wang, 2004, Neuro-Fuzzy Model based Electrical Load Forecasting System, The Transactions of KIIS, Vol. 14, No. 5, pp. 553-538DOI
16 
M. K. Kim, C. E. Hong, Jan 2016, The Artificial Neural Network based Electric Power Demand Forecast using a Season and Weather Informations, The Transactions of the Korean Institute of Electrical Engineers, Vol. 53, No. 1, pp. 71-78DOI
17 
Yuanchao Wang, Z. Pan, J. Zheng, L. Qian, Li Mingtao, August 2019, A hybrid ensemble method for pulsar candidate classification, Astrophysics and Space Science, Vol. 364, No. 8DOI
18 
Korea Meteorological Administration, Sep. 2021, http://www.weather.go.kr/Google Search
19 
D. H. Kim, H. J. JO, M. S. Kim, J. H. Roh, J. B. Park, 2019, Short-Term Load Forecasting Based on Deep Learning Model, Trans of the KIEE, Vol. 68, No. 9, pp. 1094-1099Google Search