• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
Korean Statistics Information Service, Top 10 import and export items in 2021Google Search
2 
U. Batool, M. I. Shapiai, M. Tahirb, Z. H. Ismail, N. J. Zakaria, A. Elfakharany, 2021, A systematic review of deep learning for silicon wafer defect recognition, IEEE Access 9, pp. 116572-116593DOI
3 
M. Saqlain, Q. Abbas, J. Y Lee, 2020, A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes, IEEE Transactions on Semiconductor Manufacturing, Vol. 33, No. 3, pp. 436-444DOI
4 
U. Batool, M. I. Shapiai, H. Fauzi, J. X. Fong, 2020, Convolutional neural network for imbalanced data classification of silicon wafer defects, 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA). IEEEDOI
5 
K. Maksim, B. Kirill, Z. Eduard, G. Nikita, B. Aleksandr, L. Arina, S. Vladislav, M. Daniil and K. Nikolay, 2019, Classification of wafer maps defect based on deep learning methods with small amount of data, 2019 International Conference on Engineering and Telecommunication (EnT). IEEEDOI
6 
Sung Jin Hwang, Insung Baek, Seoung Bum Kim, 2020, Active Learning for Detecting New Defect Patterns in Wafer Bin Maps, Journal of the Korean Institute of Industrial Engineers, Vol. 48, No. 2, pp. 163-175Google Search
7 
Jeonghyeok Do, Munchurl Kim, 2020, Wafer Map Defect Pattern Classification with Progressive Pseudo-Labeling Balancing, Journal of broadcast engineering conference proceedings, pp. 250-253Google Search
8 
J. Wang, Z. Yang, J. Zhang, Q. Zhang, W. T. K Chien, 2019, AdaBalGAN: An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition, IEEE Transactions on Semiconductor Manufacturing, Vol. 32, No. 3, pp. 310-319DOI
9 
YongSung Ji, Jee-Hyong Lee, 2020, Using GAN to improve CNN performance of wafer map defect type classification: Yield enhancement, 2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEEDOI
10 
B. Devika, Neetha George, 2019, Convolutional neural network for semiconductor wafer defect detection, 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEEDOI
11 
Yuting Kong, Dong Ni, 2019, Recognition and location of mixed-type patterns in wafer bin maps, 2019 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE). IEEEDOI
12 
Barret oph, Quoc V. Le, 2016, Neural architecture search with reinforcement learning, arXiv preprint arXiv:1611. 01578DOI
13 
M. Tan, Q. Le, 2021, Efficientnetv2: Smaller models and faster training, In International Conference on Machine Learning(PMLR), Vol. 139, pp. 10096-10106Google Search
14 
Jie Hu, Li Shen, Gang Sun, 2018, Squeeze-and-excitation networks, Proceedings of the IEEE conference on computer vision and pattern recognitionGoogle Search
15 
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, 2016, Learning deep features for discriminative localization, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921-2929Google Search
16 
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, 2017, Grad-cam: Visual explanations from deep networks via gradient-based localization, Proceedings of the IEEE international conference on computer vision., pp. 618-626Google Search