• 대한전기학회
Mobile QR Code QR CODE : The Transactions of the Korean Institute of Electrical Engineers
  • COPE
  • kcse
  • 한국과학기술단체총연합회
  • 한국학술지인용색인
  • Scopus
  • crossref
  • orcid

References

1 
F. Mwasilu, J. -W Jung, Aug 2016, Enhanced Fault-Tolerant Control of Interior PMSMs Based on Adaptive EKF for EV Traction Applications, IEEE Trans. Power Electron., Vol. 31, No. 8, pp. 5746-5758DOI
2 
J. -M. Mun, G. -J. Park, S. Seo, D. -W. Kim, Y. -J. Kim, S. -Y Jung, jun. 2017, Art ID : 8105104, Design Characteristics of IPMSM With Wide Constant Power Speed Range for EV Traction, IEEE Trans. Magn., Vol. 53, No. 6DOI
3 
T. A. Huynh, M. -F. Hsieh, nov. 2017, Art ID : 8211006, Comparative Study of PM-Assisted SynRM and IPMSM on Constant Power Speed Range for EV Applications, IEEE Trans. Magn., Vol. 53, No. 11DOI
4 
K. Li, Y. Wang, July. 2019, Maximum Torque Per Ampere (MTPA) Control for IPMSM Drives Based on a Variable- Equivalent-Parameter MTPA Control Law, IEEE Trans. Power Electron., Vol. 34, No. 7, pp. 7092-7102DOI
5 
Z. Xia, S. Nalakath, R. Tarvirdilu-Asl, Y. Sun, J. Wiseman, A. Emadi, Sept. 2020, Online Optimal Tracking Method for Interior Permanent Magnet Machines With Improved MTPA and MTPV in Whole Speed and Torque Ranges, IEEE Trans. on Power Electron., Vol. 35, No. 9, pp. 9753-9769DOI
6 
C. Lai, G. Feng, K. Mukherjee, J. Tjong, N. C. Kar, April. 2018, Maximum Torque Per Ampere Control for IPMSM Using Gradient Descent Algorithm Based on Measured Speed Harmonics, IEEE Trans. Ind. Informat., Vol. 14, No. 4, pp. 1424-1435DOI
7 
A. K. Junejo, W. Xu, C. Mu, M. M. Ismail, Y. Liu, Nov. 2020, Adaptive Speed Control of PMSM Drive System Based a New Sliding-Mode Reaching Law, IEEE Trans. on Power Electron., Vol. 35, No. 11, pp. 12110-12121DOI
8 
J. Li, H. Ren, S. Wang, Y. Fang, 2020, Integral Sliding Mode Control for PMSM with Uncertainties and Disturbances via Nonlinear Disturbance Observer, 2020 39th Chinese Control Conference (CCC), pp. 2055-2060DOI
9 
A. K. Mohammed, N. K. Al-Shamaa, A. Q. Al-Dujaili, 2022, Super-Twisting Sliding Mode Control of Permanent Magnet DC Motor, 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA), pp. 347-352DOI
10 
F. -J. Lin, S. -G. Chen, M. -S. Huang, C. -H. Liang, C. -H. Liao, Jan. 2022, Adaptive Complementary Sliding Mode Control for Synchronous Reluctance Motor With Direct- Axis Current Control, IEEE Trans. on Ind. Electron., Vol. 69, No. 1, pp. 141-150DOI
11 
S. Li, M. Zhou, X. Yu, Nov. 2013, Design and Implementation of Terminal Sliding Mode Control Method for PMSM Speed Regulation System, IEEE Trans. on Ind. Informat., Vol. 9, No. 4, pp. 1879-1891DOI
12 
X. Liu, H. Yu, J. Yu, L. Zhao, 2018, Combined Speed and Current Terminal Sliding Mode Control With Nonlinear Disturbance Observer for PMSM Drive, IEEE Access, Vol. 6, pp. 29594-29601DOI
13 
W. Liu, S. Chen, H. Huang, 2019, Adaptive Nonsingular Fast Terminal Sliding Mode Control for Permanent Magnet Synchronous Motor Based on Disturbance Observer, IEEE Access, Vol. 7, pp. 153791-153798DOI
14 
Z. Gao, G. Guo, B. Zhang, 2017, Non-singular terminal sliding mode heading control of surface vehicles, 2017 36th Chinese Control Conference (CCC), pp. 634-638DOI
15 
B. Xu, L. Zhang, W. Ji, Dec. 2021, Improved Non-Singular Fast Terminal Sliding Mode Control With Disturbance Observer for PMSM Drives, IEEE Trans. Transport. Electrific., Vol. 7, No. 4, pp. 2753-2762DOI
16 
J. Huang, S. Ri, T. Fukuda, Y. Wang, June. 2019, A Disturbance Observer Based Sliding Mode Control for a Class of Underactuated Robotic System With Mismatched Uncertainties, IEEE Trans. Autom. Control, Vol. 64, No. 6, pp. 2480-2487DOI
17 
S. Cao, J. Liu, Y. Yi, Mar. 2019, Non-singular terminal sliding mode adaptive control of permanent magnet synchronous motor based on a disturbance observer, IET on Jiangsu Annual Conference on Automation, Vol. 2019, No. 15, pp. 629-634DOI